Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Webinar Addresses 3D Cell-Based Models for Regenerative Medicine

Published: Friday, October 25, 2013
Last Updated: Friday, October 25, 2013
Bookmark and Share
Dr Elad Katz presents new on-demand webinar.

Presented by Dr Elad Katz, a senior scientist at AMSBIO, a new on-demand webinar explores the potential of 3D cell-based models for regenerative medicine and drug discovery.

Two-dimensional (2D) cell cultures have provided a number of breakthroughs for understanding human tissues and diseases, as well as for discovering and testing new drugs.

However, 2D cell cultures have limitations, such as limited cell-cell and cell-matrix contacts, flat cellular morphologies and a lack of realistic mass transfer gradients.

As a result, technologies that facilitate growing cells in three-dimensional (3D) configurations have been developed to make cellular behaviors in vitro better resemble the body.

In this recorded webinar, Dr Katz assesses the impact on the physiological relevance of in vitro cell based models using traditional ECM proteins, alvetex scaffolds and low adhesion plates in drug discovery and disease modeling applications.

Highlighting examples including oncology and stem cell culture, Dr Katz demonstrates how the different 3D technologies that AMSBIO provides can help researchers to successfully perform the applications they need.

Drug discovery considerations such as suitability for high-throughput screening are discussed in detail.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Organoid Matrix Enables Long-Term Culture of Human Hepatocytes
Organoid growth matrix to enable long-term culture of genome-stable bipotent stem cells from adult human liver.
Saturday, January 31, 2015
AMSBIO Expands US Operations
Company announces opening of a new North American headquarters in Cambridge, MA.
Wednesday, April 23, 2014
AMSBIO Publishes Comprehensive Cell Culture Handbook
Extensive 48-page handbook is intended for research scientists looking to culture cells in more physiologically relevant environments.
Friday, April 04, 2014
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!