Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

Major Food Ingredients Firm Chr. Hansen Installs Fill-It™

Published: Friday, October 25, 2013
Last Updated: Friday, October 25, 2013
Bookmark and Share
To meet increasing demand for its high quality bacterial starter cultures.

TAP Biosystems has announced that its Fill-It™; automated benchtop vial filling system has been installed at Chr. Hansen, a global bioscience company that develops natural ingredients for the food and nutritional industries.

The system, which is being utilized for the first time in the food industry, will be used to improve processing throughput of large batches of vials containing bacterial starter cultures for use in variety of fermented food products.

Scientists at Chr. Hansen have factory tested and installed the Fill-It to decrease production time of their culture inoculation material. It will also be used to convert non-Kosher strains to ones that are Kosher certified.

Each vial contains 4mL of a yeast extract media or a thick milk based culture containing up to 100,000 cells/mL of bacterial strains, including Lactobacillus, Lactococcus and Bifidobacterium.

These starter cultures will be distributed globally to Chr. Hansen’s production sites to be used as the first step in producing cultures for yoghurts, fermented milks and cheese, or for wine fermentation.

Microbiologists at Chr. Hansen selected Fill-It for this application because it has the capability to double batch production and more importantly, maintain high quality, contamination-free cultures.

James Lemanczyk, Microbial Service Technician at Chr. Hansen explained: “We were using a huge semi-automated filling system which took two people to operate with one technician loading vials at one end and another one to remove and package the vials at the other. It was very time consuming and we knew we had to upgrade our process to make it not only more efficient but also more consistent. We assessed two automated filling systems but chose Fill-It because the system is so compact we can use it in a standard laminar flow cabinet, we can also fit the system with a disposable tube set, as well as adapt it to fit 5mL sterile Nunc tubes. These features will not only save time with batch set-up but will help us ensure there is minimal operator interaction to produce cultures that are kept pure and contamination free during each run.”

Lemanczyk added: “We also liked the fact that TAP’s staff were willing to work with us in partnership to re-calibrate the Fill-It system to precisely dispense milk cultures. These are challenging as they can be gaseous and are very thick due to the cells lactic acid production which thickens the milk and their bacterial slime production. Now we can fill accurately, we’re really looking forward to implementing the Fill-It system into our new dispensing process.”

Stephen Guy, Fill-It Product Manager at TAP Biosystems commented: “Use of the Fill-It system for its time saving and quality benefits is well established in many international cell banks and we’re delighted that our first installation in the food industry is at such a prestigious nutritional ingredients company. Chr. Hansen’s adoption of our state-of-the-art automation indicates to food ingredients firms looking to improve batch productivity and product consistency that adding a Fill-It system in their workflow is a forward thinking investment.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck and TAP Biosystems Finalists for “Best Collaboration Award”
Recognizing ambr250 as a breakthrough technology for process development.
Wednesday, October 08, 2014
TAP and Gallus Co-host Free Webinar
Explaining the benefits of using ambr15 microbioreactors for DoE.
Wednesday, October 01, 2014
New Webinars Explore Feed Strategy Challenges Using Mini Bioreactors
Detailing how to achieve consistent feeding regimes for reproducible scale-up.
Thursday, September 25, 2014
New Webinar on Mimicking Perfusion Culture Using Micro Bioreactors
Presents validation data for improving media screening and process optimization.
Friday, February 14, 2014
TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models
TAP Biosystems announced new collaboration to develop solid tumour tissue models using its RAFT 3D cell culture system for use in drug discovery applications.
Friday, October 12, 2012
Scientific News
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
The Black Box at the Beginning of Life
Kyoto University sheds light on the earliest stages of human germ cell development.
Flu Study, on Hold, Yields New Vaccine Technology
Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison.
3D Spheroid Culture Trends
Three dimensional (3D) cell culture has been an area of increasing interest and relevance across a wide breadth of fields for some time.
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos