Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Method for Microcarrier Cell Culture using TAP’s ambr Micro Bioreactors

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Saves time optimizing process conditions enabling rapid vaccine production.

TAP Biosystems has announced that it has developed a new method of using microcarriers with its ambr™ micro bioreactor system.

This technique enables scientists to produce uniform microcarrier samples and perform automated media exchange to rapidly optimize parameters for culturing adherent cell lines on microcarriers, thus shortening timelines for successfully scaling up manufacturing of vaccines and cell therapies.

Scientists at TAP have utilized the ambr workstation to develop an automated method for providing highly consistent dispensing of microcarriers to multiple 10-15mL ambr microbioreactors.

This means scientists can then rapidly test up to 24 cell-specific culture parameters in parallel including stirring, media formulation or feed strategies to determine the optimum conditions for cell attachment, growth rate and vaccine titre, for example.

The new method, which has been developed using Vero adherent cells attached to Cytodex® 1 microcarriers, allows a 20% media exchange to be performed at any time of the day or night on 24 ambr vessels in approximately 4h.

Since the method allows even microcarrier distribution, scientists can then study up to 24 different parameters in parallel, simultaneously.

This reduces reliance on spinner flasks and bench top bioreactors, saving vaccine and cell therapy manufacturers many months of scale-up process development work.

The method and results of the study are available in a technical application note, which can be requested via the link: http://www.tapbiosystems.com/ambr_microvacc/technoterequest_corporate.asp
Dr Barney Zoro, ambr Product Manager at TAP Biosystems stated: "There is a great deal of interest in developing vaccines using attachment dependent Vero cells and microcarriers as they allow cell propagation in bioreactors rather than roller bottles. The use of bioreactors can provide greater process control, resulting in high-titre vaccine production. However, the main issue is how to accurately mimic bioreactor conditions as producing evenly distributed microcarriers and performing media exchange can be problematic using spinner flasks and benchtop bioreactors. Our new method for microcarrier culture using the ambr system means scientists can begin their experiments with uniform microcarrier samples and perform media exchange without interruption of stirring.”

Zoro added: “Being able to assess different parameters, as well as perform process development in weeks rather than months when using ambr will save scientists valuable time, enabling them to rapidly scale up an optimum cell culture process for more affordable vaccines or as a quick response to unexpected situations such as a pandemic threat.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck and TAP Biosystems Finalists for “Best Collaboration Award”
Recognizing ambr250 as a breakthrough technology for process development.
Wednesday, October 08, 2014
TAP and Gallus Co-host Free Webinar
Explaining the benefits of using ambr15 microbioreactors for DoE.
Wednesday, October 01, 2014
New Webinars Explore Feed Strategy Challenges Using Mini Bioreactors
Detailing how to achieve consistent feeding regimes for reproducible scale-up.
Thursday, September 25, 2014
New Webinar on Mimicking Perfusion Culture Using Micro Bioreactors
Presents validation data for improving media screening and process optimization.
Friday, February 14, 2014
TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models
TAP Biosystems announced new collaboration to develop solid tumour tissue models using its RAFT 3D cell culture system for use in drug discovery applications.
Friday, October 12, 2012
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Using Cancer Cells' Mass to Predict Treatment Response
A device has been developed that can detect changes in cell mass at a minute scale.
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
Human Intestines and Functioning Nerves Engineered
The new technology enables the study of human health and advances the goal of regenerative medicine.
Chemical Snapshots Could Lead to Better Engineered Cartilage
Taking "chemical photographs" of the cartilage between joints and comparing it to engineered versions could lead to better implants, say researchers.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
New Model of Lung Regeneration
Scientists have developed a tissue-engineered model of lung and trachea which contains the different cell types found in the repiratory system.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!