Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Design and Test New Approach for Corneal Stem Cell Treatments

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Study offers insight into procedure that may accelerate research and clinical applications for stem cell-related corneal blindness.

Researchers in the Cedars-Sinai Regenerative Medicine Institute have designed and tested a novel, minute-long procedure to prepare human amniotic membrane for use as a scaffold for specialized stem cells that may be used to treat some corneal diseases. This membrane serves as a foundation that supports the growth of stem cells in order to graft them onto the cornea.

This new method, explained in a paper published this month in the journal PLOS ONE, may accelerate research and clinical applications for stem cell corneal transplantation.

Corneal blindness affects more than 8 million people worldwide. Among other causes, corneal blindness can be the outcome of corneal stem cell deficiency, a disease usually resulting from genetic defects or injury to the eye — such as burns, infection or chronic inflammation — that can lead to vision loss. A feasible treatment to rectify vision loss for such patients is corneal stem cell transplantation, either as a biopsy from another eye or by transplanting cultured stem cells, although this promising approach is not yet fully standardized.

An approved biological foundation for cultured stem cells is the human amniotic membrane, a thin but sturdy film that separates the fetus from the placenta. For the best growth of stem cells, amniotic cells need to be removed by chemical agents. The existing methods for removing these cells from this membrane are not standardized, leave behind amniotic cells and may cause unwanted loss of some of the membrane components.

The amniotic cell removal method created at Cedars-Sinai takes less than one minute and ensures virtually complete amniotic cell removal and preservation of amniotic membrane components, and also supports the overall growth of various stem and tissue cells.

"We believe that this straightforward and relatively fast procedure would allow easier standardization of amniotic membrane as a valuable stem cell support and improve the current standard of care in corneal stem cell transplantation," said lead author Alexander Ljubimov, PhD, director of the Eye Program at the Cedars-Sinai Regenerative Medicine Institute. "This new method may provide a better method for researchers, transplant corneal surgeons and manufacturing companies alike."

Mehrnoosh Saghizadeh Ghiam, PhD, a research scientist in the Regenerative Medicine Institute’s Eye Program, assistant professor in the department of Biomedical Sciences and first author of the study, commented on the potential of the new method.

"The amniotic membrane has many beneficial properties and provides an attractive framework to grow tissue and stem cells for regenerative medicine transplantations, especially in replacing missing stem cells in the cornea," said Saghizadeh. "Our method for preparing this scaffold for cell expansion is and may streamline clinical applications of cell therapies."

The study was conducted by a research team that includes co-author Katerina Jirsova, PhD, from the Charles University in Prague, Czech Republic, the director of the Cedars-Sinai Regenerative Medicine Institute Clive Svendsen, PhD, Yaron Rabinowitz, MD, director of the Division of Ophthalmology Research at Cedars-Sinai and Dhruv Sareen, PhD, director of the Regenerative Medicine Institute's iPSC core facility. The Eye Program is in the Cedars-Sinai Regenerative Medicine Institute and collaborates with the Cedars-Sinai department of Neurosurgery and the Cedars-Sinai Medical Genetics Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Recreating Stem Cells From Deceased Patients to Study Present-Day Illnesses
Cedars-Sinai team remakes brain and gut stem cells in a dish to test potential therapies for debilitating and fatal diseases.
Wednesday, December 03, 2014
Scientific News
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Puttng Cells Through Their Paces
An obstacle course for human lung cells could be the answer for better testing the effectiveness of potential new drugs.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
Origin of Cultured Cells: Not Where You Think
Study shows cultured cells from decades-old cell line does not originate from the patient it was claimed to derive from.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Hope for Zika Treatment Found in Drug Screening
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection.
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Growing Noroviruses in the Lab
Human noroviruses – the leading viral cause of acute diarrhea around the world – have been difficult to study because scientists had not found a way to grow them in the lab.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!