Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Phasefocus Announces the Availability of the VL Series of Live Cell Imaging Systems

Published: Wednesday, February 05, 2014
Last Updated: Wednesday, February 05, 2014
Bookmark and Share
A family of phase microscopy systems for live cell imaging.

Phase Focus Ltd has announced a family of innovative phase microscopy systems for live cell imaging using the Phasefocus Virtual Lens®.

The Virtual Lens, VL, acquisition and processing engine uses a technique known as ptychography, to provide quantitative, high contrast, label-free images of cells for long term time-lapse studies.

The use of fluorescent probes is commonplace for labelling fixed specimens. However, when used in living cells, these can be toxic and ultimately perturb the natural cell function. The use of laser illumination can also be phototoxic to cells.

The Phasefocus VL20 upright and VL21 inverted live cell imaging systems use very low power laser illumination thereby enabling long term time-lapse cell imaging, including multi-area time-lapse, to produce high contrast quantitative image information.

In addition to this, the quantitative nature of the phase information means that data such as cell thickness, cell volume, and cell motility can be measured on a familiar and easy-to-use system for the study of both individual cells and cell populations.

The Virtual Lens is based on technology developed at the University of Sheffield by Professor John Rodenburg. It provides an iterative solution of the diffraction pattern phase problem and is applicable to visible light imaging, X-ray imaging and atomic resolution electron imaging.

Phasefocus has applied the technology to develop and install two systems at the University of York in the Department of Biology as one of many technology-leading techniques in the Imaging and Cytometry group managed by Dr Peter O'Toole.

Dr O'Toole describes ptychography as "one of the most important breakthroughs in imaging. It addresses many of the fundamental problems inherent in current microscopy techniques. Put simply, what you get is more than what you see! Artefacts of sample preparation which may arise from labelling or use of markers are negated. I have been most impressed by Phasefocus and their ability to quickly respond to feedback and then to develop products to meet the needs of the user."

In conjunction with the development of the Virtual Lens, Phasefocus is supporting a KTP Associate at York, - Dr Rakesh Suman - who works in Dr O'Toole's group tutoring members of the department in the use of the technique for the study of many different sample types including cancer and stem cells and applications relating to immunology and neurology.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Bio-Mimicry Method For Preparing & Labeling Stem Cells Developed
Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI.
Stem Cell Advance Could Be Key Step Toward Treating Deadly Blood Diseases
UCLA scientists get closer to creating blood stem cells in the lab.
Harnessing Engineered Slippery Surfaces For Tissue Repair
A new method could facilitate the transfer of intact regenerating cell sheets from the culture dish to damaged tissues in patients.
Brazilian Zika Virus Strain Causes Birth Defects in Experimental Models
First direct experimental proof of causal effect, researchers say.
Gut Model HuMiX Works Like the Real Thing
Developed by scientists at the Luxembourg Centre for Systems Biology, the “Human Microbial Cross-talk” model is representative of the actual conditions and processes that occur within our intestines.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
New Method Allows First Look At Embryo Implantation
Researchers at The Rockefeller University develop a method that shows the molecular and cellular processes that occur up to day 14 after fertilization.
Detecting Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!