Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

Phasefocus Announces the Availability of the VL Series of Live Cell Imaging Systems

Published: Wednesday, February 05, 2014
Last Updated: Wednesday, February 05, 2014
Bookmark and Share
A family of phase microscopy systems for live cell imaging.

Phase Focus Ltd has announced a family of innovative phase microscopy systems for live cell imaging using the Phasefocus Virtual Lens®.

The Virtual Lens, VL, acquisition and processing engine uses a technique known as ptychography, to provide quantitative, high contrast, label-free images of cells for long term time-lapse studies.

The use of fluorescent probes is commonplace for labelling fixed specimens. However, when used in living cells, these can be toxic and ultimately perturb the natural cell function. The use of laser illumination can also be phototoxic to cells.

The Phasefocus VL20 upright and VL21 inverted live cell imaging systems use very low power laser illumination thereby enabling long term time-lapse cell imaging, including multi-area time-lapse, to produce high contrast quantitative image information.

In addition to this, the quantitative nature of the phase information means that data such as cell thickness, cell volume, and cell motility can be measured on a familiar and easy-to-use system for the study of both individual cells and cell populations.

The Virtual Lens is based on technology developed at the University of Sheffield by Professor John Rodenburg. It provides an iterative solution of the diffraction pattern phase problem and is applicable to visible light imaging, X-ray imaging and atomic resolution electron imaging.

Phasefocus has applied the technology to develop and install two systems at the University of York in the Department of Biology as one of many technology-leading techniques in the Imaging and Cytometry group managed by Dr Peter O'Toole.

Dr O'Toole describes ptychography as "one of the most important breakthroughs in imaging. It addresses many of the fundamental problems inherent in current microscopy techniques. Put simply, what you get is more than what you see! Artefacts of sample preparation which may arise from labelling or use of markers are negated. I have been most impressed by Phasefocus and their ability to quickly respond to feedback and then to develop products to meet the needs of the user."

In conjunction with the development of the Virtual Lens, Phasefocus is supporting a KTP Associate at York, - Dr Rakesh Suman - who works in Dr O'Toole's group tutoring members of the department in the use of the technique for the study of many different sample types including cancer and stem cells and applications relating to immunology and neurology.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Tissue Engineers Recruit Cells to Make Their Own Strong Matrix
Extracellular matrix is the material that gives tissues their strength and stretch. It’s been hard to make well in the lab, but a Brown University team reports new success. The key was creating a culture environment that guided cells to make ECM themselves.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Improving the Efficiency of Red Blood Cell Production
Study points to way of significantly reducing cost of laboratory-produced cells.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos