Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

InSphero Publishes 3D Tumor-Stroma Model for Non-Small Cell Lung Cancer

Published: Thursday, April 24, 2014
Last Updated: Thursday, April 24, 2014
Bookmark and Share
PLOS One article delivers promising co-culture method to mimic tumor microenvironment, demonstrating potential for biomarker and drug discovery.

InSphero AG, working with researchers at the Medical University Innsbruck, has published a study highlighting development of a novel 3D cell culture model for non-small cell lung cancer (NSCLC), one of the leading causes of cancer deaths in men and women worldwide. The findings, published March 24 in PLOS One, used InSphero's Grav1tyPLUSTM hanging drop  platform to form 3D tumor spheroid co-cultures comprised of a NSCLC tumor cell line and lung-derived fibroblasts. The results showed how both lung cancer cells and stromal cells (lung fibroblasts) behave differently when grown together in 3D than when grown alone. 

The study was initiated in response to the recent failure of several targeted therapies for NSCLC in clinical trials, therapies which were supported by promising in vitro data. To achieve a better in vitro model, researchers used the NSCLC cell lines A549 or Colo699 to create 3D tumors in hanging drops, with or without the lung fibroblast cell line SV80. The tumors were then analyzed for viability, morpology, and expression of different phenotypic markers using immunohistochemistry (IHC) and other methods. Most notable were changes in the tumor cells during co-culture that indicated an epithelial to mesenchymal transition (EMT), as evidenced by an increase in vimentin protein expression, and a decrease in the epithelial cell adhesion protein E-cadherin. Also of interest was the expression of alpha smooth muscle actin (a-SMA), a marker of cancer-associated fibroblasts, in the SV80 fibroblasts only when co-cultured with A549 cells. 

Dr. Jens Kelm, Chief Scientific Officer and co-founder of InSphero AG was co-author on the manuscript He states the 3D co-culture model should improve drug efficacy testing by removing some of the bias inherent in current 2D in vitro models used to screen anti-cancer drugs. "What this 3D lung cancer co-culture model confirmed for us is that tumor cells are phenotypically different in terms of their viability, activity, and morphology when they grow in the presence of fibroblasts. Likewise, the stromal cells associated with tumors also behave differently in co-culture than they do alone, becoming more like myofibroblasts, cells that are known to assist tumor growth, invasion, and metastasis. This model creates an even more native in vitro tumor environment to more easily assess tumor growth, pathobiology, and drug efficacy." 

Using Insphero's automation-compatible, high-throughput platform, the authors plan to conduct advanced screens for improved anti-cancer drugs and to indentify novel NSCLC biomarkers.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

InSphero Expands Global Availability of its Patented 3D Cell Culture Platforms
PerkinElmer named as exclusive distributor of InSphero 3D culture technology.
Thursday, August 06, 2015
InSphero AG Secures CHF 20 Million Series C Financing
3D cell culture company gains new long-term investor to fuel expansion of global operations and product portfolio.
Wednesday, July 15, 2015
InSphero AG Secures CHF 20 Million Series C Financing
Leading 3D cell culture company gains new long-term investor to fuel expansion of global operations and product portfolio.
Tuesday, July 14, 2015
3D Liver Spheroid Model in Use by MIP-DILI
European consortium will use 3D liver tissues to better predict drug-induced liver injury.
Friday, January 23, 2015
InSphero Wins ACES Award as Top European Academic Enterprise in Life Sciences
Second honor in three weeks continues momentum for leading supplier of 3D microtissues for in vitro toxicity and efficacy testing.
Wednesday, October 15, 2014
InSphero Named #1 Swiss Startup for 2014
Leading supplier of 3D microtissues for in vitro toxicity and efficacy testing earns top honors in annual Swiss startup competition.
Saturday, October 04, 2014
InSphero Announces Collaboration with NCATS
Study to characterize 460 NCATS anti-cancer agents in 3D tumor models generated using InSphero technology.
Friday, March 21, 2014
InSphero Hires New Director of Global Marketing
Randy Strube, Ph.D. joins company to strengthen InSphero's marketing team.
Thursday, January 30, 2014
Scientific News
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Puttng Cells Through Their Paces
An obstacle course for human lung cells could be the answer for better testing the effectiveness of potential new drugs.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
Origin of Cultured Cells: Not Where You Think
Study shows cultured cells from decades-old cell line does not originate from the patient it was claimed to derive from.
Hope for Zika Treatment Found in Drug Screening
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!