Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Quantitative Imaging Mode of the NanoWizard 3

Published: Thursday, May 01, 2014
Last Updated: Thursday, May 01, 2014
Bookmark and Share
JPK Instruments reports on the use of the Quantitative Imaging mode for tissue engineering studies at Niigata University.

Tomoyuki Kawase is an associate professor at the Institute of Medicine and Dentistry at Niigata University. His field of expertise is tissue engineering about which he has published several key papers*. Professor Kawase is interested to determine the optimal stiffness or elasticity of cell scaffolding materials. In addition, it is also important to demonstrate dynamic changes in cytoskeletal fiber formation in response to the mechanical property of scaffolds.

Prior to learning about JPK’s instrumentation, Professor Kawase used fluorescence microscopy and scanning electron microscopy. However, these instruments cannot determine the elasticity of materials and cells. Under the overall banner of atomic force microscopy, AFM, it is possible to study multiple properties of soft materials under aqueous conditions. Speaking about his choice of the NanoWizard®3 BioScience AFM system with the unique Quantitative Imaging, QI™, mode, Professor Kawase said his motivation was definitely the scanning speed. “For me, the QI mode seems technically easier than other modes especially in terms of softer materials such as living cells. I find that the JPK AFM is organized simply, and so is tough enough for a heavy user load. It is nd trouble-free and easy to maintain.”

QI™ is the new quantitative imaging mode from JPK which was developed to make AFM imaging easier than ever before. With QI™, a force curve based imaging mode, the user has full control over the tip-sample interaction force at every pixel of the image. There is no longer a need for setpoint or gain adjustment while scanning. It is particularly powerful when imaging soft, sticky or loosely attached samples or samples with steep edges. QI™ comes as standard with the NanoWizard®3 family of AFMs.



Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

JPK Reports on the Study of Structure and Dynamics of Biological Membranes
JPK Instruments reports on how AFM and advanced fluorescence microscopy is being applied in the study of biological membranes in the Centre de Biochimie Structurale.
Tuesday, October 15, 2013
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!