Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

What Fuels Salmonella’s Invasion Strategy?

Published: Thursday, May 08, 2014
Last Updated: Tuesday, May 13, 2014
Bookmark and Share
As well as reducing the effects Salmonella can have we also need more effective ways to combat it once it's inside our bodies.

Certain strains of Salmonella bacteria such as Salmonella Typhimurium (S. Typhimurium) are among of the most common causes of food-borne gastroenteritis. Other strains of Salmonella such as S. Typhi are responsible for typhoid fever, which causes 200,000 deaths around the world each year. Ensuring food is clear of contamination, and water is clean are key to reducing the effects Salmonella can have, but we also need more effective ways to combat Salmonella once it's inside our bodies.

To address this the Institute of Food Research, strategically supported by BBSRC has been studying S.Typhimuriumbacteria to understand, not only how they transmit through the food chain, but why they are so effective and dangerous once inside us.

If we consume food or water contaminated with S. Typhimurium, the first stage of infection is to get into the cells that line our gut. These epithelial cells are adapted to defend against such attacks, but Salmonella has a wealth of strategies to overcome these and make it more virulent. It also needs these virulence genes to overcome the cells of the immune system, which it invades to move around the body. We are learning a lot about these virulence genes, but until this new study, published in the journal PLOS ONE, we didn't know how Salmonella fuelled itself for this. A source of energy and nutrition is vital, and knowing what Salmonella uses could inform new strategies to prevent infection.

To discover more about Salmonella's feeding habits, Dr Arthur Thompson and his team constructed S. Typhimurium strains lacking certain key genes in important metabolic pathways. They then examined how well these mutated strains reproduced in human epithelial cells, grown in cultures.

"We found that glucose is the major nutrient used by S.Typhimurium," said Dr Thompson. Salmonella converts glucose to pyruvate in a process called glycolysis, which also releases energy needed to fuel growth and reproduction. Knocking out one enzyme in glycolysis, and enzymes used to transport glucose into the bacteria severely reduced S. Typhimurium's ability to reproduce in epithelial cells, but didn't eradicate it completely. "This suggests that although S. Typhimurium requires glucose, it is also able to use other nutrients, and that's something we're now studying," said Dr Thompson.

This contrasts with previous findings from similar experiments on macrophage cells by the IFR team, as for successful macrophage invasion, glycolysis is absolutely essential. Macrophages are the immune cells sent to destroy Salmonella, but instead Salmonella invades the macrophages. Infected macrophages can carry Salmonella around the body causing a potentially fatal systemic infection.

"We now have a much more complete picture of the nutritional needs of Salmonella, which is important since this information may also suggest new ways to develop potential therapeutic interventions," said Dr Thompson.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
The Black Box at the Beginning of Life
Kyoto University sheds light on the earliest stages of human germ cell development.
Flu Study, on Hold, Yields New Vaccine Technology
Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison.
3D Spheroid Culture Trends
Three dimensional (3D) cell culture has been an area of increasing interest and relevance across a wide breadth of fields for some time.
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos