Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>Videos>This Video


CellKey 384 Label-Free Cellular Analysis System
Molecular Devices

The CellKey® 384 System is a universal, high throughput label-free platform for real-time cell-based functional analysis of endogenous and recombinant receptors. The system enables the measurement of a wide range of targets in a single-assay, including all families of G-protein coupled receptors (GPCRs), as well as tyrosine kinase receptors (TKRs), adhesion molecules, and indirect measurement of ion channel activation. In particular, the system is a major breakthrough for accurate monitoring of Gαi- and Gαs-coupled GPCR receptors, as it overcomes many of the challenges and limitations found with the traditionally available assay formats. The underlying technology of the system is cellular dielectric spectroscopy (CDS), an impedance based measurement that eliminates the need for labels, such as tags, dyes, or specialized reagents. By eliminating the requirement for labels, the CellKey System streamlines assay development by reducing the number of steps to be optimized, and allows users to develop one standard assay solution for multiple target classes, regardless of pathway. The 384-well format increases throughput and enables up to 25,000 samples to be acquired per 8 hour day. The higher density microplate format reduces the per well assay costs by reducing the cells/well and reagents requirements. Additionally, the CellKey 384 System includes a tip wash system, which extends unattended operation. The system was designed to meet the needs of drug discovery scientists-- from target identification and validation through lead optimization. It is sensitive enough to monitor ligand-mediated activation of endogenous receptors expressed in adherent or non-adherent cell lines, including primary cells. The benefit of this is the ability to generate more physiologically relevant data than obtained when using genetically and chemically manipulated cells. While traditional technologies measure only discrete intracellular events, such as Ca2+ flux or cAMP fluctuation, the CellKey System measures the integrated response of the whole cell to receptor activation. By presenting a more complete picture of the complex pathways activated, scientists gain a better understanding of the cellular response. For example, upon detecting GPCR activation, the CellKey System generates robust and reproducible response profiles that are characteristic of Gαs-, Gαi- or Gαq- GPCRs. This qualitative data can be used to identify and deconvolute the pathway(s) through which receptors transduce their signals, and enables detailed interpretation of the mechanism of action (MOA) of lead compounds. The CellKey 384 System is a fully integrated solution consisting of the instrument with on-board temperature control and internally integrated fluidics, a custom microplate for detection, and an extensive software suite. The integrated pipettor head allows the system to add ligand while simultaneously capturing the immediate cellular response. This feature contributes to the robustness and reproducibility of the CellKey System response profiles. The system software manages both data acquisition and the information-rich, real-time kinetic data analysis. Additionally, the system has been designed to integrate with most available automation options.

Request more information
Company product page

Scientific News
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Tissue Engineers Recruit Cells to Make Their Own Strong Matrix
Extracellular matrix is the material that gives tissues their strength and stretch. It’s been hard to make well in the lab, but a Brown University team reports new success. The key was creating a culture environment that guided cells to make ECM themselves.
Towards Patient-Specific Drug Screening
A new breakthrough by the 3D stem cell printing team at Heriot-Watt could pave the way to individually tailored drug testing regimes, both reducing the need for animal testing and ensuring that patients receive drugs which are most effective for their individual needs.
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Improving the Efficiency of Red Blood Cell Production
Study points to way of significantly reducing cost of laboratory-produced cells.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos