Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>Videos>This Video


3D Organotypic Liver Cultures and their Application in Predictive Toxicology

3D cultivation allows organotypic microtissue formation ensuring cell-cell contacts and contacts to the extracellular matrix. The communication between cells at tight junctions and across extracellular matrix induces and maintains cellular differentiation, functionality and viability. 3D cell cultivation techniques can tremendously improve studies on drug metabolism, drug toxicity especially long-term repeated dose effects. Using a high-throughput 3D cultivation system, we produced 3D organotypic cultures of human hepatic cells using a 96 well plate based hanging drop method. This method allows scaffold-free reorganization of cells under the force of gravity. We show that the production of 3D organotypic cultures of various hepatic cell lines and primary liver cells is possible (Mueller et al., 2011, 2013). The hepatic cells in these 3D cultures were analyzed for viability and functionality. We show that the organotypic cultures maintain high liver-specific function over 3 weeks of culture (Gunness et al., 2013). The effects of several compounds (acetaminophen, aflatoxin B, valproic acid, chlorpromazine, troglitazone and rosiglitazone) were monitored and compared. Currently we are using this system for mechanistic studies. In conclusion, better functionality of 3D systems improves the prediction of toxicity and will have impact in the changed paradigm of drug screening.

Request more information
Company product page

Scientific News
Study Implicates Glial Cells in Fragile X Syndrome
The genetic defect behind a common cause of mental retardation affects not only neurons but also the more numerous glial cells in the brain.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
A Step Forward in Building Functional Human Tissues
Researchers at Wyss Institute have bioprinted a tubular 3D renal architecture that recapitulates functions of the kidney.
Stiffening a Blow to Cancer Cells
Researchers develop a way to predict how a tumor tissue's physical properties affect its response to chemotherapy drugs.
Curcumin Shows Promise as Cancer Treatment
When delivered at the correct circadian phase, curcumin demonstrates sustained toxicity in cancer cells and should be considered for use in patient care.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos