Corporate Banner
Satellite Banner
Chromatography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

High Capacity Antibody Purification

Published: Sunday, August 17, 2014
Last Updated: Friday, August 29, 2014
Bookmark and Share
Researchers from the A*Star Bioprocessing Technology Institute have used magnetic nanoparticles to break the capacity barrier for antibody purification.

Monoclonal antibodies represent the largest and fastest-growing segment of international biopharma. While these therapeutic agents are a boon for global healthcare, productivity constraints pose a serious challenge for manufacturers seeking to make sufficient amounts for therapeutic applications. Now, A*STAR researchers have developed a high-capacity method to purify monoclonal antibodies that uses magnetic nanoparticles and also introduces new operating conditions.1

At present, therapeutic antibodies are generally purified by a technique known as protein A affinity chromatography. The process yields a high purification factor — typically 99 per cent — but it is slow, thereby creating a severe productivity bottleneck. The process is largely hindered by the low capacity of protein A, which binds monoclonal antibodies at an average rate of 50 grams per liter of protein A chromatography media. The overall purification process requires unpurified antibodies to pass through columns packed with the media in multiple cycles that can take up to a week.

A research team led by Pete Gagnon and co-workers from the A*STAR Bioprocessing Technology Institute in Singapore have developed an alternative method with 1,000 times the capacity of protein A. The technique involves the use of polyethylene glycol, which causes the antibodies to be deposited on the surface of starch-coated magnetic nanoparticles (see image). The particles are collected in a magnetic field, undeposited contaminants are washed away and the purified antibodies recovered by removing the polyethylene glycol.

“The high capacity of our nanoparticle method makes it much faster than column chromatography,” explains Gagnon. “Instead of the pharmaceutical industry norm of five to eight cycles, the new process requires only one cycle, which takes just a few hours.” This reduction dramatically increases the productivity of the new approach over traditional methods.

The new method also required the research team to develop new operating conditions. Polyethylene glycol has been used for decades to process antibodies, but it has never achieved the level of purity needed for clinical therapeutics. The team discovered that by elevating the salt concentration, they could reduce contaminant levels from about 250,000 parts per million to 500: the same level achieved by protein A. A single follow-on polishing step using a multimodal chromatography column further purified the antibodies to clinical quality standards.

Gagnon notes the high potential for adoption of the new technology by industry. In addition to solving the long-standing problem of productivity for monoclonal antibodies, the nanoparticle approach can be applied to many other therapeutic proteins and also to viral vaccines.

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute.

Reference
1. Gagnon, P., Toh, P. & Lee, J. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol. Journal of Chromatography A 1324, 171–180 (2013). | 


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Extracting Ions From A Single Drop of Blood
A new, miniature device that extracts trace ions from just one drop of blood with minimal sample preparation could vastly simplify the analysis of blood samples for certain components.
Improving Snake Antivenom
Scientists are working to determine the effectiveness of antivenom to improve treatment options for people who have been bitten by a poisonous snake.
The Perfect Partnership: Research & Industry; Software & Instrumentation. It really starts to come together at ASMS 2015
Collaboration and knowledge-sharing were evident everywhere: on the bus, in the hallways and in the bars. This article aims to capture this theme and share with you some of the fruits of this coming together of science and industry.
Researchers Use Nanotubes to Better Understand Diseases
Researchers in UC’s Department of Cancer Biology are collaborating with material scientists from the University of Houston to create and use nanotubes to capture and understand the regulation of proteins involved in a variety of diseases.
3D for Top-Down Proteomics: Extra Dimension for More Proteins
Researchers from the University of Wisconsin- Madison have tested the possible applications of adding a "third dimension" to chromatography.
Scientists Come Up with New Technique to Detect Alien Life on Mars
Researchers have provided evidence that combining chromatography/mass spectroscopy with Raman spectroscopy could improve astrobiological studies.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!