Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Drought Resistance Explained

Published: Tuesday, November 24, 2009
Last Updated: Tuesday, November 24, 2009
Bookmark and Share
Structural study at EMBL reveals how plants respond to water shortages.

Much as adrenaline coursing through our veins drives our body’s reactions to stress, the plant hormone abscisic acid (ABA) is behind plants’ responses to stressful situations such as drought, but how it does so has been a mystery for years.

Scientists at the European Molecular Biology Laboratory (EMBL) in Grenoble, France, and the Consejo Superior de Investigaciones Cientificas (CSIC) in Valencia, Spain discovered that the key lies in the structure of a protein called PYR1 and how it interacts with the hormone.

Their study, published online in Nature, could open up new approaches to increasing crops’ resistance to water shortage.

Under normal conditions, proteins called PP2Cs inhibit the ABA pathway, but when a plant is subjected to drought, the concentration of ABA in its cells increases. This removes the brake from the pathway, allowing the signal for drought response to be carried through the plant’s cells. This turns specific genes on or off, triggering mechanisms for increasing water uptake and storage, and decreasing water loss. But ABA does not interact directly with PP2Cs, so how does it cause them to be inhibited? Recent studies had indicated that the members of a family of 14 proteins might each act as middle-men, but how those proteins detected ABA and inhibited PP2Cs remained a mystery – until now.

A group of scientists headed by José Antonio Marquez from EMBL Grenoble and Pedro Luis Rodriguez from CSIC looked at one member of this family, a protein called PYR1. When they used X-ray crystallography to determine its 3-dimensional structure, the scientists found that the protein looks like a hand.

In the absence of ABA, the hand remains open, but when ABA is present it nestles in the palm of the PYR1 hand, which closes over the hormone as if holding a ball, thereby enabling a PP2C molecule to sit on top of the folded fingers. As these features seem to be conserved across most members of this protein family, these findings confirm the family as the main ABA receptors. Moreover, they elucidate how the whole process of stress response starts: by binding to PYR1, ABA causes it to hijack PP2C molecules, which are therefore not available to block the stress response.

“If you treat plants with ABA before a drought occurs, they take all their water-saving measures before the drought actually hits, so they are more prepared, and more likely to survive that water shortage – they become more tolerant to drought”, Rodriguez explains.

“The problem so far”, Marquez adds, “has been that ABA is very difficult – and expensive – to produce. But thanks to this structural biology approach, we now know what ABA interacts with and how, and this can help to find other molecules with the same effect but which can be feasibly produced and applied.”

To determine the structure of PYR1, the scientists made use of the infrastructure of the Partnership for Structural Biology, including EMBL Grenoble’s high-throughput crystallization facilities and the beamlines at the European Synchrotron Radiation Facility, located in the same campus as EMBL Grenoble.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Electron Microscopy Images Reveal the Assembly of HIV
EMBL researchers provide the as yet closest look at the structure of immature HIV.
Wednesday, June 24, 2009
The Closest Look Ever at Native Human Tissue
EMBL researchers have published the first 3D image of human skin at molecular resolution and reveal the molecular Velcro-like organization that interlinks cells.
Friday, December 07, 2007
Scientific News
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!