Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Vitamins could lead to the Design of Novel Drugs to Combat Malaria

Published: Friday, January 27, 2012
Last Updated: Friday, January 27, 2012
Bookmark and Share
The research will enable scientists to learn more about the nature of the enzymes required for vitamin biosynthesis by the malaria causing pathogen Plasmodium.

Vitamins are essential nutrients required in small amounts, the lack of which leads to deficiencies. Many pathogenic microorganisms produce vitamins, and these biosynthetic pathways may provide suitable targets for development of new drugs.

Indeed antifolates targeting vitamin B9 biosynthesis of the malarial parasites have been proven valuable chemotherapeutics for the treatment of malaria, one of the most devastating infectious diseases leading to nearly 250 million cases worldwide and about 1 million deaths annually. Vitamin B6 biosynthesis of the parasite has been discussed as a drug novel target.

A major factor hindering malaria control is the high degree of resistance developed by Plasmodium species against currently available drugs. Hence, there is still an urgent need for the identification of novel drug targets as well as antimalarial chemotherapeutics.

Using the University’s Southampton Diffraction Centre, researchers have now been able to describe the malarial enzymes responsible for Vitamin B6 biosynthesis with atomic 3D structures. Vitamin B6 biosynthesis is a highly organised process involving an enzyme complex of 24 protein subunits. The assembly from individual proteins was studied by electron microscopy in collaboration with the Boettcher group at the University of Edinburgh.

Dr Ivo Tews, Lecturer in Structural Biology at the University of Southampton, says: “The structural studies explain how these vital enzymes are activated and show the substrate of vitamin B6 biosynthesis bound to give insights into the chemistry of PLP biosynthesis. The enzyme complex has a fascinating internal tunnel for the transfer of reactive reaction intermediates. The studies also discovered an unexpected organisation of enzyme complexes into fibres.

“The new data are a starting point for the development of specific inhibitors that target either the enzyme’s active sites or the assembly of the proteins into functional complexes.”

The research, which is an EU F6 funded programme for two years, is published in the latest issue of the journal, Structure.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Scientists Decode Structure at Root of Muscular Disease
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos