Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Promise of Structure-Based Drug Design for GPCRs

Published: Thursday, May 10, 2012
Last Updated: Thursday, May 10, 2012
Bookmark and Share
Heptares Therapeutics announces the recent publication of a major review of the state of the art for GPCR drug discovery and new insights that, for the first time, can be obtained from structural biology.

The review has been published online in Trends in Pharmacological Sciences, a Cell Press publication, and will appear in a special issue of the journal in May, which focuses on structure-based drug design (SBDD).

The authors from Heptares describe how SBDD is becoming the new paradigm for drug discovery targeting GPCRs due to recent technological developments in GPCR stabilisation and novel structural biology. Previously, such approaches were only applicable to soluble enzymes (such as kinases), for which they have now become integrated into the best practices of medicinal chemists. The success of SBDD in developing superior drugs targeting these enzymes has had a significant impact on the pipelines of pharmaceutical companies, leading to the development of multiple marketed drugs and late-stage pipeline candidates.

"The promise of SBDD for GPCRs is that rational design can now be used to identify and optimise ligands that bind challenging or undruggable GPCR targets," said Fiona Marshall, Heptares' Chief Scientific Officer and co-author of the paper. "These small molecules have the potential to offer better potency, selectivity and drug-like properties than previously achievable, establishing a strong basis for the development of much improved medicines for patients."

In the review, the authors discuss how the recent availability of X-ray structures of GPCRs in multiple pharmacologically relevant and ligand-bound conformations, and the subsequent computational analyses of the ligand-binding sites in these conformations, provide a new way to assess the druggability of GPCRs. Druggability is the property of a drug target describing the ease with which a satisfactory small molecule drug may be found which modulates that target in the desired manner. It is a key factor in prioritization of drug discovery targets.

As an example of this, the authors describe Heptares' recent work on the SBDD of A2A antagonists, illustrating how small, potent and selective compounds can be discovered and optimised using virtual screening and receptor-ligand models and X-ray co-structures. A deep druggable region of the A2A binding site revealed by crystallography was targeted and fully exploited to design orally available and efficacious antagonists. A lead candidate in this series is the subject of a global licensing agreement recently announced between Heptares and Shire.

To date, Heptares has applied its GPCR-focused SBDD approach to several other important GPCRs, enabling the assembly of a rich pipeline of novel drug candidates targeting serious neurological (CNS) and metabolic disorders, including: highly selective muscarinic M1 agonists (Alzheimer's disease and cognitive impairment associated with other CNS disorders); dual orexin 1/2 antagonist (chronic insomnia); selective orexin 1 antagonist (addiction and compulsive disorders); allosteric modulators of mGluR5 (autism, Parkinson's disease, depression and anxiety); GLP-1 agonist (Type 2 diabetes); and CXCR-4 antagonists (cancer/HIV).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Heptares Solves First Family B GPCR Structure
Heptares Therapeutics has used its StaR® technology to solve entirely in-house the first structure of a Family B sub-class G protein-coupled receptor.
Tuesday, September 11, 2012
Scientific News
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Seeing DROSHA for the First Time
IBS team gets the first glimpse of elusive protein structure.
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Big Moves in Protein Structure Prediction and Design
Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins.
Pushing Drug Discovery Forward
A new study, led by scientists at The Scripps Research Institute (TSRI), shows how different pharmaceutical drugs hit either the “on” or “off” switch of a signaling protein linked to asthma, obesity and type 2 diabetes.
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!