Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Promise of Structure-Based Drug Design for GPCRs

Published: Thursday, May 10, 2012
Last Updated: Thursday, May 10, 2012
Bookmark and Share
Heptares Therapeutics announces the recent publication of a major review of the state of the art for GPCR drug discovery and new insights that, for the first time, can be obtained from structural biology.

The review has been published online in Trends in Pharmacological Sciences, a Cell Press publication, and will appear in a special issue of the journal in May, which focuses on structure-based drug design (SBDD).

The authors from Heptares describe how SBDD is becoming the new paradigm for drug discovery targeting GPCRs due to recent technological developments in GPCR stabilisation and novel structural biology. Previously, such approaches were only applicable to soluble enzymes (such as kinases), for which they have now become integrated into the best practices of medicinal chemists. The success of SBDD in developing superior drugs targeting these enzymes has had a significant impact on the pipelines of pharmaceutical companies, leading to the development of multiple marketed drugs and late-stage pipeline candidates.

"The promise of SBDD for GPCRs is that rational design can now be used to identify and optimise ligands that bind challenging or undruggable GPCR targets," said Fiona Marshall, Heptares' Chief Scientific Officer and co-author of the paper. "These small molecules have the potential to offer better potency, selectivity and drug-like properties than previously achievable, establishing a strong basis for the development of much improved medicines for patients."

In the review, the authors discuss how the recent availability of X-ray structures of GPCRs in multiple pharmacologically relevant and ligand-bound conformations, and the subsequent computational analyses of the ligand-binding sites in these conformations, provide a new way to assess the druggability of GPCRs. Druggability is the property of a drug target describing the ease with which a satisfactory small molecule drug may be found which modulates that target in the desired manner. It is a key factor in prioritization of drug discovery targets.

As an example of this, the authors describe Heptares' recent work on the SBDD of A2A antagonists, illustrating how small, potent and selective compounds can be discovered and optimised using virtual screening and receptor-ligand models and X-ray co-structures. A deep druggable region of the A2A binding site revealed by crystallography was targeted and fully exploited to design orally available and efficacious antagonists. A lead candidate in this series is the subject of a global licensing agreement recently announced between Heptares and Shire.

To date, Heptares has applied its GPCR-focused SBDD approach to several other important GPCRs, enabling the assembly of a rich pipeline of novel drug candidates targeting serious neurological (CNS) and metabolic disorders, including: highly selective muscarinic M1 agonists (Alzheimer's disease and cognitive impairment associated with other CNS disorders); dual orexin 1/2 antagonist (chronic insomnia); selective orexin 1 antagonist (addiction and compulsive disorders); allosteric modulators of mGluR5 (autism, Parkinson's disease, depression and anxiety); GLP-1 agonist (Type 2 diabetes); and CXCR-4 antagonists (cancer/HIV).


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Heptares Solves First Family B GPCR Structure
Heptares Therapeutics has used its StaR® technology to solve entirely in-house the first structure of a Family B sub-class G protein-coupled receptor.
Tuesday, September 11, 2012
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
X-ray Study May Aid in Designing Better Blood Pressure Drugs
New atomic-scale details could help create more effective medications with fewer side effects.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!