Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

At Smallest Scale, Liquid Crystal Behaviour Portends New Materials

Published: Saturday, May 05, 2012
Last Updated: Thursday, May 10, 2012
Bookmark and Share
Latest research has shown that liquid crystals may have some new technological tricks in store.

An international team of researchers led by University of Wisconsin-Madison Professor of Chemical and Biological Engineering Juan J. de Pablo reports the results of a computational study that shows liquid crystals, manipulated at the smallest scale, can unexpectedly induce the molecules they interact with to self-organize in ways that could lead to entirely new classes of materials with new properties.

A computational model shows nanospheres of liquid crystal materials. The different patterns represent the self organization of surfactants, the molecules the liquid crystals interact with at their surface interface.Image: Juan de Pablo.

"From an applied perspective, once we get to very small scales, it becomes incredibly difficult to pattern the structure of materials. But here we show it is possible to use liquid crystals to spontaneously create nanoscale morphologies we didn't know existed," says de Pablo of computer simulations that portray liquid crystals self-organizing at the molecular scale in ways that could lead to remarkable new materials with scores of technological applications.

As their name implies, liquid crystals exhibit the order of a solid crystal but flow like a liquid. Used in combination with polarizers, optical filters and electric fields, liquid crystals underlie the pixels that make sharp pictures on thin computer or television displays. Liquid crystal displays alone are a multibillion dollar industry. The technology has also been used to make ultrasensitive thermometers and has even been deployed in lasers, among other applications.

The new study modeled the behavior of thousands of rod-shaped liquid crystal molecules packed into nano-sized liquid droplets. It showed that the confined molecules self organize as the droplets are cooled. "At elevated temperatures, the droplets are disordered and the liquid is isotropic," de Pablo explains. "As you cool them down, they become ordered and form a liquid crystal phase. The liquid crystallinity within the droplets, surprisingly, induces water and other molecules at the interface of the droplets, known as surfactants, to organize into ordered nanodomains. This is a behavior that was not known."

In the absence of a liquid crystal, the molecules at the interface of the droplet adopt a homogeneous distribution. In the presence of a liquid crystal, however, they form an ordered nanostructure. "You have two things going on at the same time: confinement of the liquid crystals and an interplay of their structure with the interface of the droplet," notes de Pablo. "As you lower the temperature the liquid crystal starts to become organized and imprints that order into the surfactant itself, causing it to self assemble."

It was well known that interfaces influence the order or morphology of liquid crystals. The new study shows the opposite to be true as well.

"Now you can think of forming these ordered nanophases, controlling them through droplet size or surfactant concentration, and then decorating them to build up structures and create new classes of materials," says de Pablo.

As an example, de Pablo suggested that surfactants coupled to DNA molecules could be added to the surface of a liquid crystal droplets, which could then assemble through the hybridization of DNA. Such nanoscale engineering, he notes, could also form the basis for liquid crystal based detection of toxins, biological molecules, or viruses. A virus or protein binding to the droplet would change the way the surfactants and the liquid crystals within the droplet are organized, triggering an optical signal. Such a technology would have important uses in biosecurity, health care and biology research settings.

The new study was supported by the U.S. Department of Energy (DOE) through the Office of Basic Energy Sciences, and the U.S. National Science Foundation. In addition to de Pablo, authors of the new report include former postdoctoral fellows J.A. Moreno-Razo and E.J. Sambriski, now at the Autonomous Metropolitan University of Mexico and Delaware Valley College, respectively; Nicholas L. Abbott, of UW-Madison; and J.P. Hernández-Ortiz of the National University of Colombia.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
Drug Design Strategy to Improve Breast Cancer Treatment
Scientists develop novel structure-based drug design strategy aimed at altering the basic landscape of hormone-driven breast cancer treatment.
Crystals, Super Magnets in Drug Discovery
Scientists have produced larger superparamagnetic crystals that could revolutionise drug delivery.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Snapshots of Chemical Flipping a Biological Switch
X-ray laser gets first real-time snapshots of a chemical flipping a biological switch, opening new path to understanding how RNA works.
Uncovering Elusive Proteins
Researchers have determined the complete structure of elusive proteins, known as tetraspanins, for the first time.
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Alzheimer’s Treatment Moves a Step Closer
Merck scientists have reported the discovery of verubecestat, a structurally unique, orally bioavailable small molecule that has been shown to target the most visible sign of the disease in the brain.
Study Unocovers Cancer-Linked Protein’s Associates
Researchers have developed a new list of nearly 100 potential partners of a cancer-linked enzyme by studying its interactions with other proteins.
Scientists Uncover Why Hepatitis C Vaccine is Difficult to Make
Scientists have uncovered one reason why a successful hepatitis C vaccine continues to be elusive.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!