Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Zetasizer µV Used in Measuring Protein Structural Transition

Published: Friday, July 20, 2012
Last Updated: Friday, July 20, 2012
Bookmark and Share
UNAM uses dynamic light scattering for allosteric transition characterization.

Using the Zetasizer µV dynamic light scattering (DLS) system from Malvern Instruments, Professor Mario L. Calcagno and his team at the Biochemistry Department of the Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM, the National Autonomous University of Mexico) have been able to distinguish allosteric transition [structural rearrangements] in a single E. coli protein.

Characterizing protein allostery is challenging because of its sensitivity to experimental conditions, however, a quantitative description of allosteric transition is important in understanding and controlling metabolic and other biochemical processes.

“We use the Zetasizer µV to characterize the size of proteins and how they interact to produce multimeric forms or even supramolecular arrangements of the protein such as viral capsids [shells],” said Dr Ismael Bustos-Jaimes, from Laboratory of Physical Chemistry and Protein Engineering at UNAM commented “The Zetasizer µV allows us to work with sizes in the range of 1 nm to 500 nm and follow each assembly and stability parameter, such as pH, temperature and ionic strength, guiding us to the optimal production conditions for these virus-like particles.”

“The sensitivity of the Zetasizer µV has additionally allowed my colleague, Prof Calcagno, to analyze allosteric transitions” explained Dr Bustos-Jaimes.

Dr Bustos-Jaimes continued, “The size of the hexameric glucosamine-6-phosphate deaminase protein from E. coli changes its shape to a more compact form upon allosteric-activator binding, and this change can be measured.”

“The Zetasizer µV software is user-friendly and in addition to measuring particle size it delivers information about the quality of sample preparation. This is very important when you work with molecules which are prone to uncontrolled aggregation,” said Dr Bustos-Jaimes.

The UNAM team studies allosteric transitions and the assembly of virus-like particles (VLPs) for use in diagnostics and disease control.

VLPs are biological nanoparticles that resemble natural viruses but contain no genetic material. As non-infective agents, they are suitable for use in the analysis of viral infection mechanisms, vaccine production, tissue-specific drug delivery and as biological nanomaterials.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos