Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Delving Into the Molecular Mechanism Behind Deep-Sea Bacteria’s Pressure Tolerance

Published: Wednesday, August 01, 2012
Last Updated: Wednesday, August 01, 2012
Bookmark and Share
A Japanese research team have identified a structural change that confers pressure-resistant properties on a particular protein found in bacteria.

The Mariana Trench is the deepest feature of the Earth’s surface. The water column there exerts a pressure of more than one thousand times normal atmospheric pressure at sea level, enough pressure to crush an SUV. Yet many organisms thrive in this seemingly inhospitable environment. A Japanese research team has been investigating how deep-sea bacteria adapt to such high-pressure conditions. They have identified a structural change that confers pressure-resistant properties on a particular protein found in bacteria. The findings may one day help guide the design of enzymes for use in high-pressure chemical industrial processes.

In general, pressure, like that caused by a water column thousands of feet deep, deforms proteins. As the proteins change shape, water can penetrate the protein’s interior. Some proteins are better able to resist this incursion of water, but the molecular mechanisms of the pressure resistance aren’t yet well understood.

“Our group is focusing on high-pressure protein crystallography, using 3-isopropylmalate dehydrogenase (IPMDH) as a model protein. The goal is to delve into the principles of the molecular mechanism of the pressure tolerance of proteins by comparing the structures of IPMDHs from organisms that thrive in high-pressure environments and those that are sensitive to high-pressure pressure environments,” explains Nobuhisa Watanabe, a professor at the Synchrotron Radiation Research Center, Nagoya University.

To create the high pressures necessary for their studies, the team uses a diamond anvil cell (DAC), which consists of two opposing diamonds with a gasket compressed between the culets (the small, flat facet at the bottom of the diamonds).

The team’s big discovery so far is that the initial water penetration at the molecular surface of the side opposite to the active site of IPMDH is unique.

“At the site of the penetration, there is a difference of amino acid between IPMDHs from bacteria that thrive in high-pressure environments and those that are sensitive to it. Based on this data, we substituted one amino acid at the site of the IPMDH from pressure-sensitive bacteria and checked its activity under pressure,” says Watanabe. “And as we expected, only this one residue-substituted IPMDH, which has 364 amino acids in total, achieved pressure resistance comparable to the bacteria that thrive in high-pressure environments.”

This means that it may soon be possible to synthesize designer pressure-resistant proteins. The team plans to continue their high-pressure studies of several other proteins to try to discover the physical principles behind pressure resistance mechanisms that enable bacteria to thrive in high-pressure conditions.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Bacteria Propagate Antibiotic Resistance at a Molecular Level
Researchers from the University of North Carolina at Chapel Hill have utilized crystallography in an attempt to prevent “superbugs” from genetically propagating drug resistance.
Thursday, August 02, 2012
Scientific News
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Protein Findings Could Lead To New Class Of Antibiotics
Atomic-level images of a protein have revealed a characteristic that could form a basis of new antibiotic approach.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Catching Proteins in the Act
Scientists can now observe light activated processes in proteins through the use of free-electron x-ray lasers.
'Missing Evolutionary Link' of Natural Drug Source Found
Scripps Florida study finds 'missing evolutionary link' of a widely used natural drug source
New Way of Displaying 3D Molecular Structures
Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!