Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Researchers Provide Detailed View of Brain Protein Structure

Published: Monday, October 22, 2012
Last Updated: Monday, October 22, 2012
Bookmark and Share
Results may help improve drugs for neurological disorders.

Researchers have published the first highly detailed description of how neurotensin, a neuropeptide hormone which modulates nerve cell activity in the brain, interacts with its receptor. Their results suggest that neuropeptide hormones use a novel binding mechanism to activate a class of receptors called G-protein coupled receptors (GPCRs).

"The knowledge of how the peptide binds to its receptor should help scientists design better drugs," said Dr. Reinhard Grisshammer, a scientist at the NIH's National Institute of Neurological Disorders and Stroke (NINDS) and an author of the study published in Nature.

Binding of neurotensin initiates a series of reactions in nerve cells. Previous studies have shown that neurotensin may be involved in Parkinson’s disease, schizophrenia, temperature regulation, pain, and cancer cell growth.

Dr. Grisshammer and his colleagues used X-ray crystallography to show what the receptor looks like in atomic detail when it is bound to neurotensin. Their results provide the most direct and detailed views describing this interaction which may change the way scientists develop drugs targeting similar neuropeptide receptors.

X-ray crystallography is a technique in which scientists shoot X-rays at crystallized molecules to determine a molecule’s shape and structure. The X-rays change directions, or diffract, as they pass through the crystals before hitting a detector where they form a pattern that is used to calculate the atomic structure of the molecule. These structures guide the way scientists think about how proteins work.

Neurotensin receptors and other GPCRs belong to a large class of membrane proteins which are activated by a variety of molecules, called ligands. Previous X-ray crystallography studies showed that smaller ligands, such as adrenaline and retinal, bind in the middle of their respective GPCRs and well below the receptor’s surface. In contrast, Dr. Grisshammer’s group found that neurotensin binds to the outer part of its receptor, just at the receptor surface. These results suggest that neuropeptides activate GPCRs in a different way compared to the smaller ligands.

Forming well-diffracting neuropeptide-bound GPCR crystals is very difficult. Dr. Grisshammer and his colleagues spent many years obtaining the results on the neurotensin receptor. During that time Dr. Grisshammer started collaborating with a group led by Dr. Christopher Tate, Ph.D. at the MRC Laboratory of Molecular Biology, Cambridge, England. Dr. Tate’s lab used recombinant gene technology to create a stable version of the neurotensin receptor which tightly binds neurotensin. Meanwhile Dr. Grisshammer’s lab employed the latest methods to crystallize the receptor bound to a short version of neurotensin.

The results published today are the first X-ray crystallography studies showing how a neuropeptide agonist binds to neuropeptide GPCRs. Nonetheless, more work is needed to fully understand the detailed signaling mechanism of this GPCR, said Dr. Grisshammer.

This study was supported by NINDS; the National Institute of Diabetes and Digestive and Kidney Diseases; Protein Production Facility of the New York Consortium on Membrane Protein Structure, New York City; and the MRC Laboratory of Molecular Biology.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Antibiotic Mechanism Discovered
A structural study revealed how an antibiotic called borrelidin stops bacterial growth.
Tuesday, April 21, 2015
How the Environment Contributes to Human Diseases
Using a new imaging technique, NIH researchers have found that the biological machinery that builds DNA can insert molecules into the DNA strand that are damaged as a result of environmental exposures.
Tuesday, November 25, 2014
Key HIV Protein Structure Revealed
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.
Tuesday, November 26, 2013
NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus
Structure-based design may be key to successful vaccine for common childhood illness.
Friday, November 01, 2013
3-D Images Show Flame Retardants Can Mimic Estrogens in NIH Study
Researchers used X-ray crystallography to build a 3-D model of the protein binding to flame retardants.
Friday, August 23, 2013
Researchers Get Close-Up View of Water Pores Needed in the Eye's Lens
NIH-funded study of aquaporins could hold clues to cataract.
Tuesday, August 06, 2013
NIH Scientists Examine HBV Proteins
Studies shed light on the mystery surrounding Hepatitis B Virus.
Thursday, January 17, 2013
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Friday, October 12, 2012
NIH Common Fund Researchers Uncover Structure of Important Target for Drug Design
Researchers have uncovered a potent class of small molecules that selectively turn on the S1P1 receptor.
Tuesday, February 21, 2012
Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos