Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Understanding Antibiotic Resistance Using Crystallography and Computation

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Scientists to investigate how one particular type of carbapenemase recognizes and breaks down antibiotics.

Scientists at the University of Bristol, together with collaborators at the University of Aveiro, Portugal, have solved the structure of an enzyme that breaks down carbapenems, antibiotics 'of last resort' which, until recently, were kept in reserve for serious infections that failed to respond to other treatments.

Increasingly, bacteria such as E. coli are resisting the action of carbapenems by producing enzymes (carbapenemases) that break a specific chemical bond in the antibiotic, destroying its antimicrobial activity.

Carbapenemases are members of the group of enzymes called beta-lactamases that break down penicillins and related antibiotics, but it has not been clear why carbapenemases can destroy carbapenems while other beta-lactamases cannot.

Using molecular dynamics simulations, Professor Adrian Mulholland in the School of Chemistry and Dr Jim Spencer in the School of Cellular and Molecular Medicine, showed how a particular type of carbapenemase enzyme reorients bound antibiotic to promote its breakdown and render it ineffective.

Professor Mulholland said: "The class of antibiotics called carbapenems, drugs related to penicillin, are increasingly important in healthcare as treatments for bacterial infections. Until recently, carbapenems were 'antibiotics of last resort' but the growing problem of resistance to other drugs in organisms like E. coli (the leading cause of bloodstream infections in the UK) means that carbapenems are now becoming first-choice antibiotics for these infections. This is a worry because there are very few other treatment options for these organisms. Few new antibiotics effective against these pathogens are reaching the clinic.

"The recent appearance and spread of bacteria that resist carbapenems is a serious and growing problem: potentially, we could be left with no effective antibiotic treatments for these infections. The emergence of bacteria that resist carbapenems is therefore very worrying."

In a study published in the Journal of the American Chemical Society (JACS), the scientists combined laboratory experiments with computer simulations to investigate how one particular type of carbapenemase recognizes and breaks down antibiotics.

Using X-ray crystallography, they obtained two 'snapshots' of the carbapenemase in the act of breaking down a carbapenem antibiotic. This static structural information was used as a starting point for simulations that modelled the motions of the enzyme and the bound antibiotic.

The simulations showed how the carbapenemase reorients the drug to promote its breakdown. In beta-lactamases that cannot break down carbapenems, this rearrangement cannot happen, and so the enzyme cannot break down the antibiotic.

Knowing this should help in designing new drugs that can resist being broken down.

Dr Spencer said: "Combining laboratory and computational techniques in this way gave us a full picture of the origins of antibiotic resistance. Our crystallographic results provided structures which were the essential starting point for the simulations and the simulations were key to understanding the dynamic behaviour of the enzyme-bound drug.

"Identifying the molecular interactions that make an enzyme able to break down the drug, as we have done here, is an important first step towards modifying the drug to overcome bacterial antibiotic resistance."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos