Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Physics on a Plane: Crystals Made Under Zero Gravity

Published: Thursday, January 17, 2013
Last Updated: Thursday, January 17, 2013
Bookmark and Share
Scientists overcome the limitations of the laboratory to examine the peculiar dynamics of helium crystals on a much larger scale than can be achieved with ordinary materials.

Their results could help researchers reveal the fundamental physics behind the development of crystals, whilst also unveiling phenomena that are usually hidden by gravity.

The helium crystals were grown using high pressures, extremely low temperatures (0.6K/-272°C) and by splashing them with a superfluid – a state of quantum matter which behaves like a fluid but has zero viscosity, meaning it has complete resistance to stress. Superfluids can also flow through extremely tiny gaps without any friction.

Footage from their zero-gravity flight, which also shows the formation of the crystals close up, can be viewed below.


Lead author of the study, Professor Ryuji Nomura from the Tokyo Institute of Technology, said: “Helium crystals can grow from a superfluid extremely fast because the helium atoms are carried by a swift superflow, so it cannot hinder the crystallization process. It has been an ideal material to study the fundamental issues of crystal shape because the crystals form so quickly.

“It can take thousands of years for ordinary classic crystals to reach their final shape; however, at very low temperatures helium crystals can reach their final shape within a second. When helium crystals grow larger than 1 mm they can be easily deformed by gravity, which is why we did our experiments on a plane.”

The experiments were carried out in a small jet plane in c ooperation with the Japan Aerospace Exploration Agency (JAXA). When on a specific trajectory, known as parabolic flight, the jet plane provided zero gravity conditions for 20 seconds. Around eight experiments were performed during a two-hour flight.

A small, specially designed refrigerator was taken on board the plane, which was fitted with windows so the formation of the crystals could be observed. Large helium crystals were placed at the bottom of a high-pressure chamber and then zapped with an acoustic wave to crush them into tiny pieces; they were then splashed with a helium-4 superfluid. Once crushed, the smaller crystals were melted and larger ones grew rapidly until only one 10 mm crystal survived.

The crystal grew under a process known as Ostwald ripening. This is commonly seen in ice cream when it becomes gritty and crunchy as it gets older – larger ice crystals begin to grow at the expense of smaller ice crystals.

“Ostwald ripening is usually a very slow process and has never been seen in such huge crystals in a very short period,” continued Professor Nomura.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
Half a Million-Dollar Tick
How proteins present in tick saliva prevent the immune system from running amok.
Promising Model for Hantavirus Drug Design
X-ray crystallography provides drug template against disease transmitted by small rodents.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!