Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Physics on a Plane: Crystals Made Under Zero Gravity

Published: Thursday, January 17, 2013
Last Updated: Thursday, January 17, 2013
Bookmark and Share
Scientists overcome the limitations of the laboratory to examine the peculiar dynamics of helium crystals on a much larger scale than can be achieved with ordinary materials.

Their results could help researchers reveal the fundamental physics behind the development of crystals, whilst also unveiling phenomena that are usually hidden by gravity.

The helium crystals were grown using high pressures, extremely low temperatures (0.6K/-272°C) and by splashing them with a superfluid – a state of quantum matter which behaves like a fluid but has zero viscosity, meaning it has complete resistance to stress. Superfluids can also flow through extremely tiny gaps without any friction.

Footage from their zero-gravity flight, which also shows the formation of the crystals close up, can be viewed below.


Lead author of the study, Professor Ryuji Nomura from the Tokyo Institute of Technology, said: “Helium crystals can grow from a superfluid extremely fast because the helium atoms are carried by a swift superflow, so it cannot hinder the crystallization process. It has been an ideal material to study the fundamental issues of crystal shape because the crystals form so quickly.

“It can take thousands of years for ordinary classic crystals to reach their final shape; however, at very low temperatures helium crystals can reach their final shape within a second. When helium crystals grow larger than 1 mm they can be easily deformed by gravity, which is why we did our experiments on a plane.”

The experiments were carried out in a small jet plane in c ooperation with the Japan Aerospace Exploration Agency (JAXA). When on a specific trajectory, known as parabolic flight, the jet plane provided zero gravity conditions for 20 seconds. Around eight experiments were performed during a two-hour flight.

A small, specially designed refrigerator was taken on board the plane, which was fitted with windows so the formation of the crystals could be observed. Large helium crystals were placed at the bottom of a high-pressure chamber and then zapped with an acoustic wave to crush them into tiny pieces; they were then splashed with a helium-4 superfluid. Once crushed, the smaller crystals were melted and larger ones grew rapidly until only one 10 mm crystal survived.

The crystal grew under a process known as Ostwald ripening. This is commonly seen in ice cream when it becomes gritty and crunchy as it gets older – larger ice crystals begin to grow at the expense of smaller ice crystals.

“Ostwald ripening is usually a very slow process and has never been seen in such huge crystals in a very short period,” continued Professor Nomura.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!