Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Examine HBV Proteins

Published: Thursday, January 17, 2013
Last Updated: Thursday, January 17, 2013
Bookmark and Share
Studies shed light on the mystery surrounding Hepatitis B Virus.

Scientists from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, and the University of Oxford, U.K., have shed light on a long-standing enigma about the structure of a protein related to the Hepatitis B virus. Their findings, reported in Structure, could lead to new therapeutic strategies for chronic liver disease.

World-wide, some 350 million people are chronically infected with Hepatitis B Virus (HBV), of whom 620,000 die each year from HBV-related liver disease. Like any other pathogen, HBV expresses protein antigens that trigger the body’s immune system to defend itself. A relatively small and simple virus, HBV has three major clinical antigens that elicit an immune response: the surface antigen (which is also used safely and effectively to vaccinate individuals against HBV), the core antigen (HBcAg), and the e-antigen (HBeAg).

The HBV core antigen and the e-antigen are basically two versions of the same protein, but the core antigen is important for virus production, while the e-antigen is not. The e-antigen plays a role in establishing immune tolerance and chronic HBV infection. In addition, the core antigen assembles into the shell (capsid) that houses the genetic material of the virus, while the e-antigen is secreted into the bloodstream in an unassembled form. The relationship between the e-antigen and the core antigen has been a mystery for the past three decades.

In the new study, Alasdair Steven, Ph.D., Chief of the NIAMS Laboratory of Structural Biology Research, and Paul Wingfield, Ph.D., Chief of the NIAMS Protein Expression Laboratory developed a unique antibody that binds to and forms a stable complex with e-antigen. This complex was found to form well-diffracting crystals whose analysis allowed the structure of the complex to be determined. They discovered that the e-antigen subunit has essentially the same fold as the core antigen subunit, but that it pairs into dimers (two associated subunits) in an entirely different way, with a relative rotation of 140 degrees between the subunits. The rotation obviates the protein's ability to assemble and transforms its antigenic character. This switch represents a novel mechanism for regulating a protein's structure and function.

Understanding the e-antigen structure provides a framework upon which future studies can build to fully elucidate its role in HBV persistence and possibly a way to prevent the establishment of chronic liver infections.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Antibiotic Mechanism Discovered
A structural study revealed how an antibiotic called borrelidin stops bacterial growth.
Tuesday, April 21, 2015
How the Environment Contributes to Human Diseases
Using a new imaging technique, NIH researchers have found that the biological machinery that builds DNA can insert molecules into the DNA strand that are damaged as a result of environmental exposures.
Tuesday, November 25, 2014
Key HIV Protein Structure Revealed
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.
Tuesday, November 26, 2013
NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus
Structure-based design may be key to successful vaccine for common childhood illness.
Friday, November 01, 2013
3-D Images Show Flame Retardants Can Mimic Estrogens in NIH Study
Researchers used X-ray crystallography to build a 3-D model of the protein binding to flame retardants.
Friday, August 23, 2013
Researchers Get Close-Up View of Water Pores Needed in the Eye's Lens
NIH-funded study of aquaporins could hold clues to cataract.
Tuesday, August 06, 2013
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Monday, October 22, 2012
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Friday, October 12, 2012
NIH Common Fund Researchers Uncover Structure of Important Target for Drug Design
Researchers have uncovered a potent class of small molecules that selectively turn on the S1P1 receptor.
Tuesday, February 21, 2012
Scientific News
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!