Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Glenn Facility Successfully Replicates Ice Crystal Icing Formation in Aircraft Engine

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
For the first time ever, researchers are demonstrating ice crystal icing formation in a full scale engine test facility this month at NASA's Glenn Research Center.

The tests duplicate the natural events of cloud formation, ingestion by an aircraft engine of ice crystals created by the cloud and the reduction of engine power that can result. This phenomenon is being studied to gain an understanding of the physics behind ice crystal formation in a turbine engine.

Aircraft today routinely fly around or through areas of deep convection that appear innocuous to pilots, but have at times caused air data system instrument failures, engine power loss and engine damage due to ice crystal ingestion into the engine. The impact of these events can range from an instrument anomaly, with no impact on the flight, to multi-engine flameout with subsequent restart.

Honeywell Aerospace, of Phoenix, Ariz., provided the engine that served as the test article, and support staff for the tests. "The Honeywell engine we're using for these tests experienced a similar event in the field. Information provided regarding the test engine's field event investigation and resolution is invaluable to the success of these tests," said Mike Oliver, lead research engineer at Glenn for the tests.

These one-of-a-kind tests are continuing on a daily basis and will be completed by March 1.

According to Ron Colantonio, Atmospheric Environment Safety Technologies Project Manager at Glenn, "With these tests, NASA is one step closer in accomplishing its goals by recreating a simulated ice crystal environment that has been known to create engine and instrument anomalies during flight in these atmospheric conditions. This capability will increase our understanding of how ice accretes inside an engine and how it affects engine performance and aircraft operability."

No other engine test facility has this capability and the first engine test of this phenomenon is taking place now at Glenn's Propulsion Systems Laboratory.

Glenn is working with industry to address this aviation issue by establishing a capability that will allow engines to be operated at the same temperature and pressure conditions experienced in flight, with ice particles being ingested into full scale engines to simulate flight through a deep convective cloud.

The information gained through performing these tests will also be used to establish test methods and techniques for the study of engine icing in new and existing commercial engines, and to develop validation data sets required for advanced computer codes that can be specifically applied to assess an engine's susceptibility to icing in terms of its safety, performance and operability.

The tests are supported by NASA's Aviation Safety Program in the Aeronautics Research Mission Directorate.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Scientists Decode Structure at Root of Muscular Disease
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos