Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Solve the 3D Crystal Structure of One of the Most Important Human Proteins

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Discovery of the atomic structure of a ligand-free g protein-coupled receptor (GPCR) will help design more effective drugs.

A research team at Weill Cornell Medical College has solved the 3D crystal structure of a member protein in one of the most important classes of human proteins — the G protein-coupled receptors (GPCRs). These types of proteins latch on to and transmit chemical signals from outside the cell to the inside, and half of all drugs on the market today work by ether inhibiting or activating GPCRs.

The discovery, detailed in Nature Structural & Molecular Biology, shows the crystal structure of a GPCR — the beta 1-adrenergic receptor — that does not have a chemical signal or a "ligand" bound to it. The researchers say the finding will likely offer a major boost to drug development because designers can use information gleaned from the crystal structure to learn how to build new, more effective drugs.

"Now, by understanding the native structure of these receptors — which are likely very similar to each other — drug designers may be able to create therapies that are exquisitely targeted. That can produce better therapeutic results for patients while minimizing side effects," says Dr. Xin-Yun Huang, a professor of physiology and biophysics at Weill Cornell Medical College.

It was notoriously difficult to crystallize this ligand-free membrane receptor, which explains why no one has been able to solve a GPCR structure without ligands before, Dr. Huang adds. One scientist who managed to solve the structures of several GPCRs bound to their ligands, and also capture the structure of a GPCR bound to the G protein it usually activates on the inside of a cell, was awarded the 2012 Nobel Prize in Chemistry.

The atomic view of the unliganded GPCR has already offered some surprises to Dr. Huang and his Weill Cornell research team.

"No one knew what a GPCR at its starting, basic unliganded state looked like — or what to expect," he says. "We found that the ligand-free beta 1-adrenergic receptors form oligomers. Identification of this structure type is important because it may provide the structural basis for the communication among receptors, and between receptors and G proteins."

Mysterious Workings of GPCR Targeted Drugs

GPCRs are the largest group of cell surface receptors involved in signal transduction. They transmit signals from an enormous array of stimuli, everything from photons (light) to odorants, hormones, growth factors and neurotransmitters, says Dr. Huang, whose research has long focused on the GPCRs and the G proteins they activate inside a cell. The G proteins amplify and transfer the signal from GPCRs to produce a biochemical response.

This GPCR-G protein signaling system plays critical roles in various physiological processes such as cardiovascular and neurological functions, and in human diseases such as cancer. Drugs are designed to bind on the GPCRs and activate them, reduce their activity or turn their activity off. For example, the beta 1-adrenergic receptor on the outside of heart cells that Dr. Huang and his team crystallized is the target of beta-blocker drugs that slow down heart beat.

Many drugs that target GPCRs have been discovered by blindly screening large libraries of drug-like small molecules. Recently, crystal structures of GPCRs bound to ligands have helped researchers design new drugs. Drugs that latch on to the same binding site on a GPCR may work to either activate or inhibit transmission of a signal.

"It may be possible to compare the atomic structures of the ligand-free receptor in its starting state, when it is bound by a ligand that activates it and when it is bound by a ligand that inhibits it. The small differences may offer us clues to develop agents that elicit the reaction we want," says Dr. Huang.

Dr. Huang is now working to solve the 3D structure of the beta 1-adrenergic receptor linked to its partner G protein. "This may also provide a new template for designing new and more effective medications to control heart function," he says.

Co-authors of the study are Jianyuan Huang, Shuai Chen, and J. Jillian Zhang, all from the Department of Physiology and Biophysics at Weill Cornell.

The research was funded by a grant from the National Institutes of Health (HL 91525).


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!