Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Winners of the Aminoff Prize in Crystallography Announced

Published: Wednesday, April 03, 2013
Last Updated: Wednesday, April 03, 2013
Bookmark and Share
Carlo Gatti and Mark Spackman developed experimental and theoretical methods to study electron density in crystals, and using them to determine molecular and crystalline properties.

The Royal Swedish Academy of Sciences gives award to Carlo Gatti, CNR-ISTM, Milan, Italy and Mark Spackman, University of Western Australia.

Both Carlo Gatti and Mark Spackman have independently developed concepts for interpreting electron density distributions related to quantum chemistry theory, using multipole analysis of high-quality X-ray diffraction data. This approach has, in particular, significantly demonstrated and quantified the role of hydrogen bonding in molecular systems. ‘Charge density topology’ is important for classification of the type and strength of chemical bonding in solid compounds and molecules.

Read more about the Laureates’ research below.

The Prize will be awarded at the Royal Swedish Academy of Sciences’ Annual Meeting on 5 April 2013.

Prize amount

SEK 100,000 to be shared equally between the Laureates.

The Laureates

Carlo Gatti, Italian citizen. Born in 1954. Ph.D. in Chemistry (1978) at University of Milan. Senior Research Scientist at Institute of Molecular Sciences and Technology, Italian National Research Council (CNR-ISTM), Italy.

Mark Spackman, Australian citizen. Born in 1954. Ph.D. in Theoretical Chemistry (1989) at University of Western Australia. Wintrop Professor and Head of school at the School of Chemistry and Biochemistry, University of Western Australia, Australia.

One key concept developed by Carlo Gatti is the Source Function (Bader & Gatti, 1998), which permits visualisation of chemical bonds and other fundamental chemical properties using only information from observed electron density and its derivatives. The function equates values of observed density at any point within the crystal to a sum of atomic contributions. Input electron densities can be obtained from experimental high resolution X-ray diffraction data, collected at low temperatures to avoid thermal diffuse scattering. In X-ray crystallography and materials sciences, the Source Function tool has been extensively applied to interpret a wide range of different bonding modes.

Mark Spackman devised and implemented a new scheme for partitioning crystal space into molecular and atomic volumes limited by Hirshfeld surfaces, which reflect the nature and strength of interatomic and intermolecular interactions in quantitative terms. An exploratory paper (Spackman & Byrom, 1997), focusing on electron distributions derived from X-ray diffraction data on urea, clearly demonstrated the significance of Hirshfeld surface analysis. Figure (a) below shows the relief and contour of the Hirshfeld weight function w(r) in the molecular plane; it indicates the flat nature of w(r) close to the atoms in the molecule, with a value close to 1.0, and the steep decline with increasing distance from the molecule. Figure (b) is a contour map of the molecule electron density, while figure (c) shows the close packing in the urea crystal, with molecules approaching their nearest neighbours but separated by the intermolecular void regions. The intermolecular voids are almost entirely devoid of electron density. Hirshfeld analysis has come into general use with the advent of CrystalExplorer, a software tool for crystal engineering that Spackman played an active role in developing.

The Gregori Aminoff Prize

The Aminoff Prize is intended to reward a documented, individual contribution in the field of crystallography, including areas concerned with the dynamics of the formation and determination of crystal structures. The Prize may be awarded either to an individual Swedish or foreign researcher or jointly to a research group with no more than three members. The Aminoff Prize was first awarded in 1979.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos