Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Crystallography on the Nanogram Scale

Published: Tuesday, April 16, 2013
Last Updated: Tuesday, April 16, 2013
Bookmark and Share
Single Crystal X-ray analysis is a powerful tool for determining the structures of molecules and is widely used both in academic and industrial research.

However, this analytical method has an intrinsic limitation that target samples have to be crystallized beforehand. As a result, most oily compounds or extremely small-quantity samples have not been analyzed by single crystal X-ray study solely because there was no way to crystallize them.

Prof. Makoto Fujita’s research group at the University of Tokyo’s Graduate School of Engineering solved this problem using a porous material called a “crystalline sponge”. Crystalline sponges are porous coordination network crystals capable of aligning incoming guest molecules inside their pores along an ordered framework of organic ligands and metal ions. Once the incoming guest molecules are regularly ordered, the resulting crystalline sponges meet the requirement for X-ray analysis, thus the structure of the guest molecule can be determined by X-ray crystallography without crystallizing the sample itself. The Fujita group demonstrated that molecular structures of non-crystalline samples were unambiguously determined by simply soaking a crystal of crystalline sponge in a solution containing from 80 ng up to 5 µg of the target sample.

With this new “crystalline sponge method,” the Fujita group successfully determined the crystal structures of medicinal compounds, natural flavonoids, and a very scarce marine natural product which is extracted from a marine sponge collected at a depth of 400 m.

This research provides an innovative tool to determine the structures of very tiny amounts of organic molecules in the field of medicinal drug, food, agrichemical, fragrance and fundamental organic research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos