Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Disease Mutations Affect the Parkin Protein

Published: Monday, June 03, 2013
Last Updated: Monday, June 03, 2013
Bookmark and Share
Researchers at the MRC Laboratory of Molecular Biology have determined the crystal structure of Parkin, a protein found in cells that when mutated can lead to a hereditary form of Parkinson’s disease.

The results, published in The EMBO Journal, define the position of many of the mutations linked to hereditary Parkinson’s disease and explain how these alterations may affect the stability and function of the protein. The findings may in time reveal how the activity of Parkin is affected in patients with this rare but debilitating type of Parkinson’s disease.

Parkinson's disease is a progressive neurodegenerative disease that affects more than seven million people worldwide. Most cases of the disease occur in older individuals and are sporadic (non-familial), but around 15% of patients develop symptoms early in life because of inherited mutations in a limited number of disease genes. Why Parkin mutations are especially detrimental in nerve cells is not fully understood, but previous research indicates that Parkin regulates the function of mitochondria, the organelles that generate energy in the cell. Some disease mutations in the PARKIN gene can be easily explained since they lead to loss or instability of the Parkin protein, but many others are more difficult to understand.

Around 50% of cases of familial recessive Parkinson's disease are caused by mutations in the PARKIN gene, which encodes a protein that belongs to the RBR ubiquitin ligase enzyme family. Enzymes in this family couple other proteins in the cell to a molecule called ubiquitin, a step that can alter the function or stability of these target proteins. To understand how Parkin and other RBR ubiquitin ligase enzymes achieve this, EMBO Young Investigator David Komander and his coworker Tobias Wauer crystallized a form of human Parkin and used X-ray diffraction patterns to determine how the Parkin protein chain folds into a three-dimensional structure. Their experiments revealed an in-built control mechanism for Parkin activity, which is lost in the presence of some of the mutations responsible for Parkinson's disease. Wauer and Komander pinpointed amino acids of Parkin with key functions in ubiquitin ligase activity that are sensitive to blocking by reagents previously characterized in their laboratory. "This sensitivity to inhibitors that were developed for a very different class of enzymes is particularly exciting," Komander remarked. "We could also show that these inhibitors affect related RBR ubiquitin ligases such as HOIP, which is important for inflammatory immune responses."

The crystal structure of Parkin is already revealing some of the secrets of this molecule, which under the right conditions can protect cells from the damage that arises during Parkinson’s disease. “In time the structure may also allow development of other compounds that alter Parkin activity, which could serve as ways to limit the progression and impact of Parkinson’s disease,” concluded Komander.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Seeing DROSHA for the First Time
IBS team gets the first glimpse of elusive protein structure.
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Big Moves in Protein Structure Prediction and Design
Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins.
Pushing Drug Discovery Forward
A new study, led by scientists at The Scripps Research Institute (TSRI), shows how different pharmaceutical drugs hit either the “on” or “off” switch of a signaling protein linked to asthma, obesity and type 2 diabetes.
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!