Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Unlock Structure of Elusive ‘Stress’ Protein

Published: Friday, July 19, 2013
Last Updated: Friday, July 19, 2013
Bookmark and Share
New discovery paves the way for a transformation in drug treatments for depression, diabetes and osteoporosis.

Scientists working to design advanced medicines that are perfectly targeted to control the body’s natural receptors have made a major discovery using Diamond's Microfocus Macromolecular Crystallography beamline (I24). For the first time, they have been able to visualise and study the structure of CRF1, the protein receptor in the brain which controls our response to stress.

Heptares Therapeutics, a leading UK-based drug discovery and development company, was responsible for identifying the 3D structure of the ‘stress’ receptor, and their results are published today in the journal Nature. This discovery will help scientists to develop improved treatments for depression and anxiety. Furthermore, having identified the architecture of CRF1, scientists now have a template that can be used to accelerate research into other protein receptors that are known to be in the same ‘family’, including those that can be targeted to treat Type 2 diabetes and osteoporosis.

Stress-related diseases such as depression and anxiety are now commonplace. 1 in 4 people experience some kind of mental health problem in the course of a year. Over 105 million work days are lost to stress each year, costing UK employers £1.2 billion.

The UK also faces a major health challenge from diabetes. In the past 20 years, the number of people in the country suffering from diabetes has more than doubled to 2.9 million. By 2025 it is estimated that 5 million people will have diabetes, and that most of these cases will be Type 2 diabetes.

Heptares is a leader in the development of drugs targeting certain protein receptors, called G protein-coupled receptors. Currently 30% of drugs for a variety of diseases target these receptors, making them the largest and most important family of drug targets in the human body.

In the past, drug design has been largely the product of trial and error. Drugs would be developed and then tested until they had the desired effect. Because scientists lacked a comprehensive understanding of why and how the drugs were working, this approach could lead to unwanted side-effects.

A new way of making medicines, known as rational drug design, produces drugs that are specifically targeted to protein receptors in the body. By visualising the stress protein receptor at the atomic level, they were able, for the first time, to identify a ‘pocket’ in the structure. Computer technology will allow scientists to design a drug to fit precisely into this pocket, inhibiting the response of the ‘stress’ receptor. Such focused targeting will only affect the receptor they are aiming for and reduce the chance of unexpected side effects. The level of detail required for this work could only be achieved using the intense synchrotron light produced at Diamond Light Source, the UK’s synchrotron science facility in Oxfordshire. The synchrotron speeds electrons to near light speed, producing a light 10 billion times brighter than the sun. Around 2,500 scientists a year use this light to study samples, and its intensity allows them to visualise on a scale that is unobtainable in their home laboratories. Heptares is currently the biggest annual industrial user of the synchrotron.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diamond Appoints Director for its New Electron Bioimaging Centre
Appointment of human pathogen specialist, Professor Peijun Zhang, helps bolster UK’s strength in advanced microscopy research.
Tuesday, October 25, 2016
Diamond Light Source Scientists Publish 5000th Paper
Diamond’s milestone paper reveals findings on embryonic defects.
Friday, October 07, 2016
Diamond Light Source Announce Launch of ePSIC
Electron Physical Sciences Imaging Centre launch set to boost the UK’s science and technology infrastructure.
Tuesday, September 06, 2016
Do Germs Cause Type 1 Diabetes?
Germs could play a role in the development of type 1 diabetes by triggering the body’s immune system to destroy the cells that produce insulin, new research suggests.
Tuesday, May 17, 2016
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Friday, December 18, 2015
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
Thursday, December 03, 2015
New UK Facility to Accelerate Drug Discovery
Diamond’s on-site fragment screening facility a major boost for structural biologists.
Thursday, November 26, 2015
Lighting Up A New Path For Novel Synthetic Polio Vaccine
Crystal structures and electron microscopy images are being used to develop a vaccine to target the polio virus.
Monday, February 16, 2015
Diamond Celebrates a Glittering Year of Crystallography
From film premieres to major scientific breakthroughs, Diamond Light Source helped make the International Year of Crystallography a memorable event.
Tuesday, December 23, 2014
Scientists Gain First Glimpse of One of Nature’s Measuring ‘Rulers’
New findings offer potential to outsmart bacterial infections.
Tuesday, December 16, 2014
Scientists Discover Bacteria’s Clever Defence Mechanism
Structure of EzrA protein could help identify new antibiotic targets.
Tuesday, November 18, 2014
Investment in New Capability for Materials Analysis
Johnson Matthey, Oxford University, Diamond Light Source announce the creation a state-of-the-art materials characterisation facility at the Harwell Science and Innovation Campus.
Thursday, August 07, 2014
Scientists Uncover Bacterial War Tactics
The discovery paves the way for new drugs to fight bacterial infections.
Tuesday, April 08, 2014
Novel Crystallography Beamline Takes Delivery of in Vacuum X-Ray Detector
The Diamond Light Source beamline will facilitate challenging research on DNA, RNA, native proteins and other building blocks of life.
Friday, April 04, 2014
‘Big Science’ uncovers another piece in the Alzheimer’s puzzle
Evidence found of the possible cause of brain-cell-damaging toxic iron.
Thursday, March 27, 2014
Scientific News
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
Drug Design Strategy to Improve Breast Cancer Treatment
Scientists develop novel structure-based drug design strategy aimed at altering the basic landscape of hormone-driven breast cancer treatment.
Crystals, Super Magnets in Drug Discovery
Scientists have produced larger superparamagnetic crystals that could revolutionise drug delivery.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Snapshots of Chemical Flipping a Biological Switch
X-ray laser gets first real-time snapshots of a chemical flipping a biological switch, opening new path to understanding how RNA works.
Uncovering Elusive Proteins
Researchers have determined the complete structure of elusive proteins, known as tetraspanins, for the first time.
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Alzheimer’s Treatment Moves a Step Closer
Merck scientists have reported the discovery of verubecestat, a structurally unique, orally bioavailable small molecule that has been shown to target the most visible sign of the disease in the brain.
Study Unocovers Cancer-Linked Protein’s Associates
Researchers have developed a new list of nearly 100 potential partners of a cancer-linked enzyme by studying its interactions with other proteins.
Scientists Uncover Why Hepatitis C Vaccine is Difficult to Make
Scientists have uncovered one reason why a successful hepatitis C vaccine continues to be elusive.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!