Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Get Close-Up View of Water Pores Needed in the Eye's Lens

Published: Tuesday, August 06, 2013
Last Updated: Tuesday, August 06, 2013
Bookmark and Share
NIH-funded study of aquaporins could hold clues to cataract.

Researchers have achieved dynamic, atomic-scale views of a protein needed to maintain the transparency of the lens in the human eye.

The work, funded in part by the National Institutes of Health, could lead to new insights and drugs for treating cataract and a variety of other health conditions.

Aquaporin proteins form water channels between cells and are found in many tissues, but aquaporin zero (AQP0) is found only in the mammalian lens, which focuses light onto the retina, at the back of the eye.

The lens is primarily made up of unique cells called lens fibers that contain little else besides water and proteins called crystallins.

Tight packing of these fibers and of the crystallin proteins within them helps create a uniform medium that allows light to pass through the lens, almost as if it were glass.

Abnormal development or age-related changes in the lens can lead to cataract - a clouding of the lens that causes vision loss.

Besides age, other risk factors for cataract include smoking, diabetes, and genetic factors. Mutations in the AQP0 gene can cause congenital cataract and may increase the risk of age-related cataract.

"The AQP0 channel is believed to play a vital role in maintaining the transparency of the lens and in regulating water volume in the lens fibers, so understanding the molecular details of how water flows through the channel could lead to a better understanding of cataract," said Dr. Houmam Araj, who oversees programs on lens, cataract and oculomotor systems at NIH's National Eye Institute (NEI), which helped fund the research.

Closing of AQP0 channels is regulated by a calcium-sensitive protein called calmodulin, but the precise mechanism has been unclear.

Some models have suggested that calmodulin simply acts as a plug to fill the open channel. The new study, published in Nature Structural and Molecular Biology, reveals a more nuanced process in which calmodulin essentially grasps the open channel and forces it to close.

The research was a collaboration between investigators at the University of California, Irvine, and the Janelia Farm Research Campus in Ashburn, Va., a part of the Howard Hughes Medical Institute (HHMI).

Drs. James Hall and Douglas Tobias led the effort at UC Irvine. Dr. Tamir Gonen led the effort at Janelia Farm.

In prior studies, Dr. Gonen had examined the atomic structure of the AQP0 protein by X-ray crystallography, which involves crystallizing a protein and bombarding it with X-rays. But X-ray crystallography does not work well for large groups of proteins or for proteins in motion.

So in the new study, the researchers first used electron microscopy to view AQP0 and calmodulin bound together. Then they combined their microscopy and crystallography data to generate computerized models of how the two proteins interact and to identify the most critical amino acids (the building blocks for proteins) within AQP0.

To test their models, they neutralized those amino acids one by one in the actual AQP0 channel.

The AQP0 channel is made up of four identical barrel-shaped units, bundled together side by side. The researchers found that in the presence of calcium, calmodulin binds to one unit and then another, as if grabbing a pair of reins.

This makes the channel twist slightly, which causes just a few amino acids within each unit to slide into the channel's core and block the flow of water.

"Calmodulin essentially throws a molecular switch that moves in and out of the water pore, like the gate valve of a plumbing fixture," Dr. Hall said.

This new view of AQP0 could help lead to new approaches for treating cataract, Dr. Hall said. Cataracts are the most common cause of blindness worldwide.

In the United States, they affect about 1 in 6 people over age 40 and half over age 80. Congenital cataracts (present from birth) affect about 1 in 5,000 American children.

Cataracts can be successfully treated with surgery, in which the cloudy lens is removed and replaced with an artificial plastic lens. But the new findings "may be a step toward learning how to prevent or delay cataracts," said Dr. Hall.

The new findings also provide inroads to understanding how calmodulin interacts with a variety of protein channels, and thus could open doors to new drugs for other common health conditions.

In addition to aquaporins, our bodies rely on a vast menagerie of channels, many of which are regulated by calmodulin.

For example, calmodulin helps control the gating of ion channels, which allow the passage of ions (charged particles) in and out of our cells and are essential for nerve cell firing, muscle contraction, and the rhythmic beating of the heart. This study provides the first structural model of calmodulin bound to any complete protein channel.

Drs. Daniel Clemens and Steve Reichow were co-first authors on the study. NIH support for the study came from NEI (grants EY005661, EY018768), the National Institute of General Medical Sciences (NIGMS grant GM079233), a joint program on "Making Sense of Voltage Sensors" co-funded by NIGMS and the National Institute of Neurological Disorders and Stroke (grant GM086685), and the National Library of Medicine (grant LM007443).

Additional support came from HHMI, the National Science Foundation, and the German Academy of Sciences.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Antibiotic Mechanism Discovered
A structural study revealed how an antibiotic called borrelidin stops bacterial growth.
Tuesday, April 21, 2015
How the Environment Contributes to Human Diseases
Using a new imaging technique, NIH researchers have found that the biological machinery that builds DNA can insert molecules into the DNA strand that are damaged as a result of environmental exposures.
Tuesday, November 25, 2014
Key HIV Protein Structure Revealed
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.
Tuesday, November 26, 2013
NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus
Structure-based design may be key to successful vaccine for common childhood illness.
Friday, November 01, 2013
3-D Images Show Flame Retardants Can Mimic Estrogens in NIH Study
Researchers used X-ray crystallography to build a 3-D model of the protein binding to flame retardants.
Friday, August 23, 2013
NIH Scientists Examine HBV Proteins
Studies shed light on the mystery surrounding Hepatitis B Virus.
Thursday, January 17, 2013
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Monday, October 22, 2012
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Friday, October 12, 2012
NIH Common Fund Researchers Uncover Structure of Important Target for Drug Design
Researchers have uncovered a potent class of small molecules that selectively turn on the S1P1 receptor.
Tuesday, February 21, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!