Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Secret Life of a Cancer-Related Protein Revealed by 3D Structure

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
Like a fireman who becomes an arsonist, a protein that prevents cells becoming cancerous can also cause tumours.

The finding, published today in Nature Structural and Molecular Biology, stems from the first 3D structure of the protein’s active core, and opens up new avenues for drug design.

“Everybody thought this protein was a tumour-suppressor,” says Daniel Panne, who led the work, “but we’ve found that some mutations make it an oncogene – a gene that turns the cell cancerous – which actually makes it a viable drug target.”

Surprisingly, the finding reveals that mutations to this protein that have been linked to cancer can act in two different ways. As expected, some mutations make this ‘fireman’ protein – known as p300 – unable to put out the fire: they cause it to malfunction and lose control over other genes, thwarting its tumour-suppressor role. But, as Panne and colleagues discovered, some cancer-linked mutations actually make p300 into an arsonist: they make it hyperactive, turning it into an oncogene. Which mutations are which? The secret lies in an unexpected piece of the puzzle.

In this study, Panne and colleagues determined the structure of the whole of the protein’s active core – the part that physically interacts with genetic material to control genes – for the first time. They found that this 3D puzzle had one more piece than expected. p300 has a groove that it uses to slot onto the cell’s genetic material to activate or inactivate genes, and the EMBL scientists found that, sitting on top of that groove like a lid, was a piece no-one knew this protein had. This ‘lid’ is like a built-in self-control mechanism. It determines whether the protein can slot onto genetic material or not: for p300 to do its job, it has to open the lid. But if a mutation interferes with the lid, keeping it permanently open, the protein will go into over-drive, and the resulting uncontrolled gene activity can lead to cancer.

Tumours caused by these hyper-activating mutations could potentially be fought by drugs that inhibit p300. So, armed with the knowledge of the protein’s structure, the EMBL scientists now plan to investigate how to thwart p300 when it goes from fireman to arsonist.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Cells Export and Embed Proteins in the Membrane
EMBL scientists first to visualise crucial step.
Tuesday, January 04, 2011
Scientific News
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
Half a Million-Dollar Tick
How proteins present in tick saliva prevent the immune system from running amok.
Promising Model for Hantavirus Drug Design
X-ray crystallography provides drug template against disease transmitted by small rodents.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!