Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Secret Life of a Cancer-Related Protein Revealed by 3D Structure

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
Like a fireman who becomes an arsonist, a protein that prevents cells becoming cancerous can also cause tumours.

The finding, published today in Nature Structural and Molecular Biology, stems from the first 3D structure of the protein’s active core, and opens up new avenues for drug design.

“Everybody thought this protein was a tumour-suppressor,” says Daniel Panne, who led the work, “but we’ve found that some mutations make it an oncogene – a gene that turns the cell cancerous – which actually makes it a viable drug target.”

Surprisingly, the finding reveals that mutations to this protein that have been linked to cancer can act in two different ways. As expected, some mutations make this ‘fireman’ protein – known as p300 – unable to put out the fire: they cause it to malfunction and lose control over other genes, thwarting its tumour-suppressor role. But, as Panne and colleagues discovered, some cancer-linked mutations actually make p300 into an arsonist: they make it hyperactive, turning it into an oncogene. Which mutations are which? The secret lies in an unexpected piece of the puzzle.

In this study, Panne and colleagues determined the structure of the whole of the protein’s active core – the part that physically interacts with genetic material to control genes – for the first time. They found that this 3D puzzle had one more piece than expected. p300 has a groove that it uses to slot onto the cell’s genetic material to activate or inactivate genes, and the EMBL scientists found that, sitting on top of that groove like a lid, was a piece no-one knew this protein had. This ‘lid’ is like a built-in self-control mechanism. It determines whether the protein can slot onto genetic material or not: for p300 to do its job, it has to open the lid. But if a mutation interferes with the lid, keeping it permanently open, the protein will go into over-drive, and the resulting uncontrolled gene activity can lead to cancer.

Tumours caused by these hyper-activating mutations could potentially be fought by drugs that inhibit p300. So, armed with the knowledge of the protein’s structure, the EMBL scientists now plan to investigate how to thwart p300 when it goes from fireman to arsonist.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Cells Export and Embed Proteins in the Membrane
EMBL scientists first to visualise crucial step.
Tuesday, January 04, 2011
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
X-ray Study May Aid in Designing Better Blood Pressure Drugs
New atomic-scale details could help create more effective medications with fewer side effects.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!