Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Secret Life of a Cancer-Related Protein Revealed by 3D Structure

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
Like a fireman who becomes an arsonist, a protein that prevents cells becoming cancerous can also cause tumours.

The finding, published today in Nature Structural and Molecular Biology, stems from the first 3D structure of the protein’s active core, and opens up new avenues for drug design.

“Everybody thought this protein was a tumour-suppressor,” says Daniel Panne, who led the work, “but we’ve found that some mutations make it an oncogene – a gene that turns the cell cancerous – which actually makes it a viable drug target.”

Surprisingly, the finding reveals that mutations to this protein that have been linked to cancer can act in two different ways. As expected, some mutations make this ‘fireman’ protein – known as p300 – unable to put out the fire: they cause it to malfunction and lose control over other genes, thwarting its tumour-suppressor role. But, as Panne and colleagues discovered, some cancer-linked mutations actually make p300 into an arsonist: they make it hyperactive, turning it into an oncogene. Which mutations are which? The secret lies in an unexpected piece of the puzzle.

In this study, Panne and colleagues determined the structure of the whole of the protein’s active core – the part that physically interacts with genetic material to control genes – for the first time. They found that this 3D puzzle had one more piece than expected. p300 has a groove that it uses to slot onto the cell’s genetic material to activate or inactivate genes, and the EMBL scientists found that, sitting on top of that groove like a lid, was a piece no-one knew this protein had. This ‘lid’ is like a built-in self-control mechanism. It determines whether the protein can slot onto genetic material or not: for p300 to do its job, it has to open the lid. But if a mutation interferes with the lid, keeping it permanently open, the protein will go into over-drive, and the resulting uncontrolled gene activity can lead to cancer.

Tumours caused by these hyper-activating mutations could potentially be fought by drugs that inhibit p300. So, armed with the knowledge of the protein’s structure, the EMBL scientists now plan to investigate how to thwart p300 when it goes from fireman to arsonist.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blocking the Waste Disposal Unit
Detailed structure paves the way for more effective cancer therapies.
Monday, August 08, 2016
How Cells Export and Embed Proteins in the Membrane
EMBL scientists first to visualise crucial step.
Tuesday, January 04, 2011
Scientific News
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Protein Findings Could Lead To New Class Of Antibiotics
Atomic-level images of a protein have revealed a characteristic that could form a basis of new antibiotic approach.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Catching Proteins in the Act
Scientists can now observe light activated processes in proteins through the use of free-electron x-ray lasers.
'Missing Evolutionary Link' of Natural Drug Source Found
Scripps Florida study finds 'missing evolutionary link' of a widely used natural drug source
New Way of Displaying 3D Molecular Structures
Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Blocking the Waste Disposal Unit
Detailed structure paves the way for more effective cancer therapies.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!