Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Crystal Mysteries Spiral Deeper

Published: Friday, October 25, 2013
Last Updated: Friday, October 25, 2013
Bookmark and Share
Chemists have discovered crystal growth complexities, which at first glance appeared to confound 50 years of theory.

Their findings, which appear in the latest edition of Proceedings of the National Academy of Sciences, have a range of implications—from the production of pharmaceuticals and new electronic materials to unraveling the pathways for kidney stone formation.

The researchers focused on L-cystine crystals, the chief component of a particularly nefarious kind of kidney stone. The authors hoped to improve their understanding of how these crystals form and grow in order to design therapeutic agents that inhibit stone formation.

While the interest in L-cystine crystals is limited to the biomedical arena, understanding the details of crystal growth, especially the role of defects—or imperfections in crystals—is critical to the advancement of emerging technologies that aim to use organic crystalline materials.

Scientists in the Molecular Design Institute in the NYU Department of Chemistry have been examining defects in crystals called screw dislocations – features on the surface of a crystal that resemble a spiraled ham.

Dislocations were first posed by William Keith Burton, Nicolás Cabrera, and Sir Frederick Charles Frank in the late 1940s as essential for crystal growth. The so-called BCF theory posited that crystals with one screw dislocation would form hillocks that resembled a spiral staircase while those with two screw dislocations would merge and form a structure similar to a Mayan pyramid—a series of stacked “island” surfaces that are closed off from each other.

Using atomic force microscopy, the Molecular Design Institute team examined both kinds of screw dislocations in L-cystine crystals at nanoscale resolution. Their results showed exactly the opposite of what BCF theory predicted—crystals with one screw dislocation seemed to form stacked hexagonal “islands” while those with two proximal screw dislocations produced a six-sided spiral staircase.

A re-examination of these micrographs by Molecular Design Institute scientist Alexander Shtukenberg, in combination with computer simulations, served to refine the actual crystal growth sequence and found that, in fact, BCF theory still held. In other words, while the crystals’ physical appearance seemed at odds with the long-standing theory, they actually did grow in a manner predicted decades ago.

“These findings are remarkable in that they didn’t, at first glance, make any sense,” said NYU Chemistry Professor Michael Ward, one of the authors of the publication. “They appeared to contradict 60 years of thinking about crystal growth, but in fact revealed that crystal growth is at once elegant and complex, with hidden features that must be extracted if it is to be understood. More importantly, this example serves as a warning that first impressions are not always correct.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!