Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Smart New In Situ Tool Keeps X-Rays on Track

Published: Friday, October 25, 2013
Last Updated: Friday, October 25, 2013
Bookmark and Share
Diamond Light Source and the University of Manchester have successfully built a new beam imaging instrument, the Lancelot X-ray Beam Position Monitor (XBPM).

The new device, which incorporates the advanced silicon chip Medipix3 technology, will help scientists using Diamond to monitor the alignment of the micrometer-sized X-ray beams as they travel, first through the instrumentation that refines them and then on to the precious samples being studied with the intense synchrotron light produced by the facility’s 562m storage ring. The stability of the synchrotron radiation beams produced at Diamond is crucial to the success of experiments using smaller and smaller X-ray beams to analyse material or biochemical samples.

Travelling to a large national science facility like Diamond to become immersed in a complex set of experiments, which can last for several days, has become commonplace for scientists who are pushing the boundaries of what is possible in fields such as materials science, engineering, structural biology, energy research and environmental science.

Synchrotrons offer scientists a range of cutting-edge experimental techniques and, as the field matures, the potential for exploiting the powerful qualities of synchrotron radiation increases, making them the tool of choice for thousands of scientists in the UK and elsewhere around the world. Julien Marchal, Senior Detector Scientist at Diamond, explains, “The need for improved X-ray beam position control during experiments led us to set up the Lancelot XBPM project with the University of Manchester. The Manchester team had already demonstrated considerable success in the area of in situ beam imaging utilising a pinhole camera system based on commercial CCDs or CMOS sensors, which are similar to the imaging systems used by conventional commercial digital cameras. The idea behind our project was to replace the standard X-ray sensor used in this pinhole camera with the new X-ray photon counting pixel detector developed by the Medipix3 collaboration, which is led by CERN and to which Diamond is contributing together with several other synchrotrons and research organisations. The expertise of Roelof van Silfhout and his colleagues at UoM, coupled with our in-house detector team and access to the Medipix3 detector and Diamond’s B16 Test Beamline, has proved extremely fruitful. We now have a fully operational, portable, system that can be used in any experiments where accurate beam position control is required.”
 
The goal of the Lancelot X-ray Beam Position Monitor (XBPM) project has been to devise a ‘transparent’ instrument for measuring in real-time beam intensity, beam position, and the shape of the beam cross section, with better quality images and lower noise profiles than currently available systems. The project has successfully produced a device that can effectively provide live images of the beam without blocking it with highly absorbing media. This is of huge benefit as it gives scientists access to real-time information on the position of the incident beam, enabling them to identify issues that can arise with the X-ray optics.

In essence the device is a pinhole X-ray camera that makes images of the beam by recording the scattered radiation from thin, weakly scattering foils. A unique feature of the instrument is that it acts as a microscope, providing enlarged images with very detailed information of the impinging X-ray beam even for the micrometre-sized beams that are routinely available at Diamond.
 
Roelof van Silfhout, Reader from the School of Electrical and Electronic Engineering, led the Manchester side of the collaboration. Roelof adds, “This has been a really exciting project for my group because we’ve worked on the whole system; the electronics, the mechanical housing and the software interface for the users. Working with the Diamond team to design, build and commission an instrument that specifically meets their requirements, and will therefore benefit the scientists that use the facility, has been hugely rewarding. Our method of in situ or transparent X-ray beam imaging has been granted a patent in the UK (pending in the EU and US), and we look forward to continuing our relationship with Diamond and other synchrotrons in the future.”
 
The Lancelot XBPM project is a collaboration between Diamond Light Source and the University of Manchester, and has received financial support from the Engineering and Physical Sciences Research Council (EPSRC).


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lighting Up A New Path For Novel Synthetic Polio Vaccine
Crystal structures and electron microscopy images are being used to develop a vaccine to target the polio virus.
Monday, February 16, 2015
Diamond Celebrates a Glittering Year of Crystallography
From film premieres to major scientific breakthroughs, Diamond Light Source helped make the International Year of Crystallography a memorable event.
Tuesday, December 23, 2014
Scientists Gain First Glimpse of One of Nature’s Measuring ‘Rulers’
New findings offer potential to outsmart bacterial infections.
Tuesday, December 16, 2014
Scientists Discover Bacteria’s Clever Defence Mechanism
Structure of EzrA protein could help identify new antibiotic targets.
Tuesday, November 18, 2014
Investment in New Capability for Materials Analysis
Johnson Matthey, Oxford University, Diamond Light Source announce the creation a state-of-the-art materials characterisation facility at the Harwell Science and Innovation Campus.
Thursday, August 07, 2014
Scientists Uncover Bacterial War Tactics
The discovery paves the way for new drugs to fight bacterial infections.
Tuesday, April 08, 2014
Novel Crystallography Beamline Takes Delivery of in Vacuum X-Ray Detector
The Diamond Light Source beamline will facilitate challenging research on DNA, RNA, native proteins and other building blocks of life.
Friday, April 04, 2014
‘Big Science’ uncovers another piece in the Alzheimer’s puzzle
Evidence found of the possible cause of brain-cell-damaging toxic iron.
Thursday, March 27, 2014
Year of Glittering Celebrations begins at Diamond Light Source
Activity to showcase 100 years of crystallography.
Tuesday, February 04, 2014
Funding Announced for New Biological Facilities at Diamond Light Source
Landmark silver doughnut-shaped building on the Harwell Campus has been granted £15.6 million for a new imaging centre for biology.
Friday, December 13, 2013
Scientists Unlock Structure of Elusive ‘Stress’ Protein
New discovery paves the way for a transformation in drug treatments for depression, diabetes and osteoporosis.
Friday, July 19, 2013
Diamond Sheds Light on Basic Building Blocks of Life
The UK’s national synchrotron facility, Diamond Light Source, is now the first and only place in Europe where pathogens requiring Containment Level 3 can be analysed at atomic and molecular level using synchrotron light.
Tuesday, February 19, 2013
Science Minister Shines Light on World’s Biggest Synchrotron Stage
On Thursday 2nd December, David Willetts MP, Minister for Universities and Science, will visit Diamond Light Source, the UK’s national synchrotron science facility, and officially open a unique new research station that can create molecular-scale 3D images of large objects such as aerospace and engineering components, and explore their structure in atomic-scale detail.
Thursday, December 02, 2010
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
X-ray Study May Aid in Designing Better Blood Pressure Drugs
New atomic-scale details could help create more effective medications with fewer side effects.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!