Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bringing Out the Best in X-ray Crystallography Data

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
“Function follows form” might have been written to describe proteins.

“Function follows form” might have been written to describe proteins, as the M. C. Escher-esque folds and twists of nature’s workhorse biomolecules enables each to carry out its specific responsibilities.

Technology’s workhorse for determining protein structures is X-ray protein crystallography, in which a beam of x-rays sent through a crystallized protein is scattered by the protein’s atoms, creating a diffraction pattern of dots that can be reconstructed by computer into a 3D model

While synchrotron radiation facilities, such as Berkeley Lab’s Advanced Light Source, have been a boon to the field of protein crystallography, providing increasingly higher resolution structures over increasingly shorter time-spans, the technology is still a challenge. For some molecules, especially large molecular complexes, it is often only possible to obtain low-resolution experimental data, which means models are difficult to make and must be manually refined using computer modeling.

“Refinement of protein and other biomolecular structural models against low-resolution crystallographic data has been limited by the ability of current methods to converge on a structure with realistic geometry,” says Paul Adams, a bioengineer with Berkeley Lab’s Physical Biosciences Division and leading authority on x-ray crystallography, who, starting in 2000, has been leading the development of a highly successful software program called PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) that automates crystallography data analysis.

Now, Adams and a team that included Nathaniel Echols in his research group, and Frank DiMaio with the research group of David Baker at the University of Washington, have developed a new method for refining crystallographic data that combines aspects of PHENIX with aspects of Rosetta, the most widely used software for the prediction and design of the three-dimensional structure of proteins and other large biomolecules.

The Rosetta program, which was originally developed by Baker and his research group, utilizes a detailed all-atom force field plus a diverse set of search procedures for the creation of its 3D models. PHENIX assembles 3D models atom-by-atom through the extraction of the best data from X-ray measurements. One of the most important components of PHENIX is “phenix.refine,” a program for improving these models against the X-ray data using maximum likelihood methods. It was this feature that was combined with Rosetta.

“Our new method integrates the Rosetta and PHENIX programs directly in a flexible framework that allows it to be adapted to  a wide variety of different scenarios,” says Echols. “The main advantage of our method is that it can aggressively optimize models to fit the data and also present realistic geometry. In general, it has been difficult to come up with methods that handle both of these demands. As a result, crystallographers have either spent a lot of time fixing errors, or the published structures end up being of poor quality.”

Echols is one of two lead authors, along with DiMaio, of a paper in Nature Methods describing this work. The paper is titled “Improved low-resolution crystallographic refinement with Phenix and Rosetta.” In addition to Adams and Baker, other co-authors are Jeffrey Headd and Thomas Terwilliger. Adams and Baker are the corresponding authors.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Tuesday, September 01, 2015
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Wednesday, August 12, 2015
Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase
Berkeley Lab research could help scientists predict how carbon is stored underground.
Tuesday, September 24, 2013
Berkeley Lab Gets $13 Million in Grants
Two grants to researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) are aimed at further automating the crystallographic process.
Thursday, October 26, 2006
Berkeley Lab Names New Director for Advanced Light Source
Roger Falcone has been named the new director of the Advanced Light Source at Berkeley Lab.
Friday, August 18, 2006
Scientific News
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
Half a Million-Dollar Tick
How proteins present in tick saliva prevent the immune system from running amok.
Promising Model for Hantavirus Drug Design
X-ray crystallography provides drug template against disease transmitted by small rodents.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!