Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Key HIV Protein Structure Revealed

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.

HIV, the virus that causes AIDS, infects more than 34 million people worldwide. Once in the body, HIV attacks and destroys immune cells. Current treatment with antiretroviral therapy helps to prevent the virus from multiplying, thus protecting the immune system.

Despite recent advances in treatment, scientists haven’t yet designed a vaccine that protects people from HIV. One challenge is that a viral surface protein known as Env can mutate rapidly. Resulting changes to the protein’s surface enable it to evade the immune system. An in-depth understanding of the structure of Env is critical to determine how the virus gains entry into cells. Env is also a major target for potential HIV vaccines.

Env extends from the surface of the HIV virus particle. The spike-shaped protein is “trimeric”—with 3 identical molecules, each with a cap-like region called glycoprotein 120 (gp120) and a stem called glycoprotein 41 (gp41) that anchors the structure in the viral membrane. Only the functional portions of Env remain constant, but these are generally hidden from the immune system by the molecule’s structure.

X-ray analyses and low-resolution electron microscopy have revealed the overall architecture and some critical features of Env. But higher resolution imaging of the overall protein structure has been elusive because of its complex, delicate structure. To gain a clearer image, a team of scientists at the Scripps Research Institute and Weill Cornell Medical College engineered a more sturdy form of the protein. Their work was supported in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID), National Institute of General Medical Sciences (NIGMS), and National Cancer Institute (NCI). The results were published in 2 papers online on October 31, 2013, in Science.

Using cryo-electron microscopy and X-ray crystallography, the researchers determined the detailed structure of Env. The team revealed the spatial arrangement of the Env components and their assembly. They determined the gp120 and gp41 subunit relationships as well as the interaction with neutralizing antibodies, which can block many strains of HIV from infecting human cells.

“Most of the prior structural studies of this envelope complex focused on individual subunits, but the structure of the intact trimeric complex was required to fully define the sites of vulnerability that could be targeted, for example with a vaccine,” says Scripps researcher Dr. Ian A. Wilson, a senior author of the papers.

“Now we all need to harness this new knowledge to design and test next-generation trimers and see if we can induce the broadly active neutralizing antibodies that an effective vaccine is going to need,” adds Weill Cornell scientist Dr. John P. Moore, another senior author.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Antibiotic Mechanism Discovered
A structural study revealed how an antibiotic called borrelidin stops bacterial growth.
Tuesday, April 21, 2015
How the Environment Contributes to Human Diseases
Using a new imaging technique, NIH researchers have found that the biological machinery that builds DNA can insert molecules into the DNA strand that are damaged as a result of environmental exposures.
Tuesday, November 25, 2014
NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus
Structure-based design may be key to successful vaccine for common childhood illness.
Friday, November 01, 2013
3-D Images Show Flame Retardants Can Mimic Estrogens in NIH Study
Researchers used X-ray crystallography to build a 3-D model of the protein binding to flame retardants.
Friday, August 23, 2013
Researchers Get Close-Up View of Water Pores Needed in the Eye's Lens
NIH-funded study of aquaporins could hold clues to cataract.
Tuesday, August 06, 2013
NIH Scientists Examine HBV Proteins
Studies shed light on the mystery surrounding Hepatitis B Virus.
Thursday, January 17, 2013
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Monday, October 22, 2012
NIH Researchers Provide Detailed View of Brain Protein Structure
Results may help improve drugs for neurological disorders.
Friday, October 12, 2012
NIH Common Fund Researchers Uncover Structure of Important Target for Drug Design
Researchers have uncovered a potent class of small molecules that selectively turn on the S1P1 receptor.
Tuesday, February 21, 2012
Scientific News
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Diamond Helps Develop New Way of Studying the Tiniest Microcrystals
Researchers have developed a new type of sample holder for ‘serial protein crystallography’.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!