Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Prove X-ray Laser Can Solve Protein Structures from Scratch

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Study shows for the first time that X-ray lasers can be used to generate a complete 3-D model of a protein without any prior knowledge of its structure.

An international team of researchers working at the Department of Energy's (DOE) SLAC National Accelerator Laboratory produced from scratch an accurate model of lysozyme, a well-studied enzyme found in egg whites, using the Linac Coherent Light Source (LCLS) X-ray laser and sophisticated computer analysis tools.

The experiment proves that X-ray lasers can play a leading role in studying important biomolecules of unknown structure. The special attributes of LCLS, which allow the study of very small crystals, could cement its role in hunting down many important biological structures that have so far remained out of reach because they form crystals too small for analysis with conventional X-ray sources.

"Determining protein structures using X-ray lasers requires averaging a gigantic amount of data to get a sufficiently accurate signal, and people wondered if this really could be done,” said Thomas Barends, a staff scientist at the Max Planck Institute for Medical Research in Germany who participated in the research. "Now we have experimental evidence. This really opens the door to new discoveries."

Collaborators from SLAC and Arizona State University also participated in the research, which was published Nov. 24 in Nature.

The underlying technique, called X-ray crystallography, is credited with solving the vast majority of all known protein structures and is associated with numerous Nobel Prizes since its first use just over a century ago.

Protein structures tie directly to their functions, such as how they bind and interact with other molecules, and thus provide vital details for developing highly targeted disease-fighting drugs. But many protein structures that are considered promising targets for new medicines remain unknown, mainly because they don't form crystals that can be deciphered with existing techniques.

This work is the latest in a rapid progression of important advances at LCLS, which began operations for users in 2010. For example, last year researchers used LCLS to determine the structure of an enzyme that can hold African sleeping sickness in check, which makes it a promising drug target. However, those previous studies relied on data from similar, known structures to fill in common data gaps.

For this study the researchers chose lysozyme, whose structure has been known for decades, because it offered a good test of whether their method produced accurate results. They soaked lysozyme crystals in a solution containing gadolinium, a metal that bonded with the lysozyme to produce a strong signal when subjected to the intense X-ray light. It was this signal from the gadolinium atoms that enabled exact reconstruction of the lysozyme molecule.

The team hopes to adapt and refine the technique to explore more complex proteins such as membrane proteins, which serve a range of important cellular functions and are the target of more than half of all new drugs in development. Only a small fraction of the thousands of membrane proteins have been completely mapped.

"This study is an important milestone on which the field will build further," said John R. Helliwell, emeritus professor of chemistry at the University of Manchester and formerly a director of the Synchrotron Radiation Source at Daresbury Laboratory in England. "The X-ray laser is bringing new opportunities and new ideas for 3-D structure determination of ever-smaller samples. The use of computers to automate this process is a triumph."

Barends said the latest results are a remarkable achievement, given that it took just a few years for LCLS to reach this milestone. "Further improvements in X-ray detectors, software and crystal formation and delivery techniques should enable more discoveries in the coming years," he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Snapshots of Chemical Flipping a Biological Switch
X-ray laser gets first real-time snapshots of a chemical flipping a biological switch, opening new path to understanding how RNA works.
Tuesday, November 15, 2016
X-ray Laser Explores New Uses for DNA Building Blocks
The founding father of DNA nanotechnology – a field that forges tiny geometric building blocks from DNA strands – recently came to SLAC to get a new view of these creations using powerful X-ray laser pulses.
Monday, March 18, 2013
Scientific News
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
Drug Design Strategy to Improve Breast Cancer Treatment
Scientists develop novel structure-based drug design strategy aimed at altering the basic landscape of hormone-driven breast cancer treatment.
Crystals, Super Magnets in Drug Discovery
Scientists have produced larger superparamagnetic crystals that could revolutionise drug delivery.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Snapshots of Chemical Flipping a Biological Switch
X-ray laser gets first real-time snapshots of a chemical flipping a biological switch, opening new path to understanding how RNA works.
Uncovering Elusive Proteins
Researchers have determined the complete structure of elusive proteins, known as tetraspanins, for the first time.
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Alzheimer’s Treatment Moves a Step Closer
Merck scientists have reported the discovery of verubecestat, a structurally unique, orally bioavailable small molecule that has been shown to target the most visible sign of the disease in the brain.
Study Unocovers Cancer-Linked Protein’s Associates
Researchers have developed a new list of nearly 100 potential partners of a cancer-linked enzyme by studying its interactions with other proteins.
Scientists Uncover Why Hepatitis C Vaccine is Difficult to Make
Scientists have uncovered one reason why a successful hepatitis C vaccine continues to be elusive.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!