Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Structure of Key Pain-Related Protein Unveiled

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
In a technical tour de force, scientists have determined, at near-atomic resolution, the structure of a protein that plays a central role in the perception of pain and heat.

Led by UCSF postdoctoral fellows Erhu Cao, PhD, and Maofu Liao, PhD, the new research will offer fresh insights to drug designers searching for new and better pain treatments, but it also is a watershed for the field of structural biology, which aims to discover how proteins are physically constructed in order to better understand their function.

Until now the method used in the new research, known as electron cryo-microscopy, or cryo-EM, was thought to be incapable of visualizing small proteins in such great detail.

“The impact will be broad,” said electron microscopist Yifan Cheng, PhD, UCSF associate professor of biochemistry and biophysics and co-senior author of two new papers that report the structure of the protein, known as TRPV1 (pronounced “trip-vee-one”), at a resolution of 3.4 Angstroms. (For comparison, a sheet of paper is about 1 million Angstroms thick.) “In the past, people never believed that you would be able to use this method to get this kind of resolution – it was thought to be impossible. This opens up a lot of opportunity.”

The findings are published in the Dec. 5 issue of Nature.

Activating TRPV1

TRPV1 has unique properties that have intrigued both biologists and the general public since it was first identified in 1997 by David Julius, PhD, professor and chair of UCSF’s Department of Physiology and co-senior author of the new cryo-EM papers.

Found in abundance in sensory nerve cells, TRPV1 proteins are ion channels: they form pores in cell membranes through which ions such as calcium may pass, altering the cells’ propensity to generate action potentials and pass on signals to other neurons.

But unlike other ion channels, TRPV1 responds to either chemical signals or temperature changes. For example, TRPV1 will change its shape to open its channel in the presence of capsaicin, the pungent compound that lends chili peppers their fiery zing, but also in response to temperatures high enough to elicit pain.

Julius and colleagues have shown that a range of pain-inducing toxins and inflammatory compounds derived from sources as diverse as spider toxins and plants will also activate TRPV1, links that have made the protein the focus of intense interest among drug developers.

The first of the two new papers in Nature describes the structure of TRPV1 in its resting state, while the second shows how the TRPV1 channel changes shape when bound to a spider toxin and a capsaicin-like compound. The visualizations support a “two-gate” model of TRPV1 activation in which different sections of the channel can change conformation in response to different chemical agents, information that will be valuable to drug designers hoping to modulate the pain response by precisely controlling TRPV1 gating.

“It’s a bit like seeing snapshots of the channel closed, then partially opened, then fully opened, which is exceedingly rare for an ion channel,” Julius said.

Zooming Into the Protein

Before the new Nature papers, said Cheng, “the best resolution for structures of TRPV1 and similar proteins was about 15 to 20 Angstroms, and many of the structures derived from the low-resolution data lacked sufficient detail to be mechanistically informative.” According to Julius, many structural biologists have considered cryo-EM to be inherently inferior to X-ray crystallography, which in the best cases can achieve resolutions of less than 2 Angstroms, with some dismissing cryo-EM as “blob-ology.”

But as its name suggests, X-ray crystallography requires that proteins of interest be crystallized, which can be extremely difficult to achieve with proteins like TRPV1 that are embedded in cell membranes. Such proteins, known as integral membrane proteins, are crucial players in important realms of biology, including cell signaling and the actions of drugs.

Beginning about four years ago, Cao, a postdoctoral associate in the Julius laboratory who shares first authorship with Liao on the two new papers, began to create highly stable, functional copies of TRPV1 that he hoped to use in X-ray crystallography studies, but the protein stubbornly resisted crystallization.

“We wondered,” said Julius, “Is there another way to get structural information out of this beautifully well behaved and functional protein in the absence of having crystals?”

In a hallway encounter, Julius learned that Cheng and David A. Agard, PhD, professor of biochemistry and biophysics and a Howard Hughes Medical Institute (HHMI) investigator were making significant technical advances in cryo-EM at UCSF’s Keck Advanced Microscopy Laboratory. He encouraged Cao to collaborate with Liao, a postdoctoral fellow in Cheng’s lab, on cryo-EM studies of TRPV1.

In cryo-EM, a sample is created by placing many copies of a protein, called single particles, in an aqueous solution. The sample is plunged into liquid ethane, which cools the solution at the rate of 100,000 degrees Celsius per second, suspending the particles at myriad orientations at minus 172 degrees Celsius in a protective glassy ice.

An electron microscope is then used to image the sample, and researchers feed images of the particles into computers, which combine the information from the many two-dimensional views to calculate the object’s three-dimensional structure.

With support from HHMI and the National Science Foundation (through an American Recovery and Reinvestment Act Major Research Instrumentation grant), Agard and colleagues collaborated with Lawrence Berkeley National Laboratory and an industrial partner, Pleasanton, Calif.-based Gatan Inc., to design and develop a new camera for cryo-EM. The new device directly captures electrons rather than first converting electrons to light, as did previous cameras.

Meanwhile, taking advantage of the new camera’s 400 frames-per-second speed, Xueming Li, PhD, a postdoctoral associate in the Cheng and Agard labs, devised a motion-correction algorithm that further improved resolution. The combined innovations in hardware and software, reported in Nature Methods last May, resulted in a great improvement over conventional cryo-EM.

“The picture is like a movie, and you can compensate for minute movements of the sample,” said Cheng. “Now we can record every single image of the sample at 3-Angstrom resolution.”

Using these new cryo-EM technologies, in a matter of months Cao and Liao visualized TRPV1 at 3.4 Angstroms, an unprecedented achievement in single-particle cryo-EM of integral membrane proteins.

The Power of Visualization

Now that they have successfully visualized TRPV1 bound to some of its chemical partners, the team hopes to determine how the protein changes shape when exposed to heat, by first heating the sample and then quickly cooling it for imaging.

Julius said that the ability to accurately capture a protein’s shape changes is one of the great strengths of cryo-EM. He anticipates that many structural biologists, even those who favor X-ray crystallography, will add cryo-EM to their toolkit, thanks to advances made in Cheng and Agard’s UCSF labs.

“These papers report the structure of TRPV1, but they also showcase the utility of cryo-EM as a method for structure determination, and that it’s also potentially a very powerful technique for looking at a protein in multiple conformations,” he said.

Julius said that despite the fact that the research team used new methods to determine TRPV1’s structure, his long acquaintance with the biochemical aspects of the protein gives him great confidence in its accuracy.

And even though he could almost visualize TRPV1 in his mind’s eye after more than 15 years’ work on the protein, he said there is something “primal” about seeing images of single TRPV1 particles arrayed on a computer monitor.

“When you see the structure of TRPV1, and you know that it fits the data so well, there’s a kind of visceral, emotional reaction where you look at it and you think, ‘Now we really know what this thing looks like.’”

Cheng agreed. “Seeing is believing,” he said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Way of Looking at Photosynthesis
Future prospects for clean, green, renewable energy may hinge upon our ability to mimic and improve upon photosynthesis.
Tuesday, June 12, 2012
Preventing Cells from Getting the Kinks Out of DNA
Discovery could pave the way for new research into how to re-design these drugs to make them more effective poisons for cancer cells and harmful bacteria.
Monday, May 24, 2010
University of California Demonstrates Wyatt’s Dynapro is Effective for Protein Unfolding
The aim of this experiment was to follow the unfolding process using Dynamic Light Scattering.
Friday, July 21, 2006
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
X-ray Study May Aid in Designing Better Blood Pressure Drugs
New atomic-scale details could help create more effective medications with fewer side effects.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!