Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Method for Determining Protein Structure has Major Implications for Drug Development

Published: Friday, December 20, 2013
Last Updated: Friday, December 20, 2013
Bookmark and Share
Ground-breaking discovery will improve the efficiency of protein structure determination, aiding targeted drug research.

Research involving scientists from Trinity College Dublin has led to a major breakthrough that could streamline the process used to determine the structure of proteins in cell membranes. This will have major implications for drug-related research because almost 50% of drugs on the market target these proteins.

Proteins in cell membranes are vital for the everyday functioning of complex cellular processes. They act as transporters to ensure that specific molecules enter and leave our cells, as signal interpreters important in decoding messages and initiating responses, and as agents that speed up appropriate responses. But to understand how they work, and how drugs can be made to target them, it is vital to determine their precise atomic 3-D structure. A major challenge is the production of large membrane protein crystals used in this pursuit.

A research group led by Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, developed a high-throughput method for growing membrane protein crystals that makes use of the ‘Lipid Cubic Phase’ (LCP). The LCP uses a fat-based media to grow these crystals in.

The crystals are then transferred to specialised circular arenas in which they interact with X-rays emitted by charged particles that race around at close to the speed of light. Scientists later examine the precise pattern left by scattered X-ray particles after they have collided with the crystals to determine their precise structure. Professor Brian Kobilka was awarded his share in the 2012 Nobel Prize in Chemistry, in part for work that made use of the LCP.

Recently, a new method for determining membrane protein structures that uses an X-ray-free laser showed great promise. However, it required huge numbers of protein crystals to generate a clear picture of their structure as only 1 in 10,000 was hit in a way that produced useable data. In the breakthrough, Professor Caffrey, as part of a large team of scientists, used the fat-based LCP media in which the protein crystals were grown to jet them across the laser at a relatively slow pace. This slower pace translated into a vastly improved ‘hit rate’, which in turn provided a more efficient profiling of the protein structure.

The scientists used a major drug target as their membrane protein of interest in this study. Abbreviated as ‘5-HT2B’, this protein is a cell receptor for serotonin, which is often linked to happiness and the feeling of well-being.  The scientists were able to determine the receptor structure to good resolution, as well as showcasing the vastly improved hit rate and ability to grow crystals in the medium in which they are delivered to the laser, which confers further method-related benefits.

Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, said: “This work represents a major breakthrough and a landmark in the membrane structural and functional biology field. Because the data were collected under conditions that were free from radiation damage, and because the research was conducted at a temperature of 20 °C, which is physiologically useful, the solved structure provides a more reliable representation of how the receptor appears within the body.”

The work in this study took place at the Linac Coherent Light Source (LCLS) at Stanford University. The letter in Science acknowledges 33 contributors, who represent nine institutions. The work at LCLS, which lasted for 84 hours, cost almost $2 million. It was supported in part by a grant from Science Foundation Ireland.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos