Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Swiss Cheese Crystal, or High-Tech Sponge?

Published: Tuesday, January 28, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
The remarkable properties of a new, porous material could lead to advances in microscopic sponging

The sponges of the future will do more than clean house.

Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another to trap and store unwanted gases.

These technologies are what University at Buffalo Assistant Professor of Chemistry Jason Benedict, PhD, had in mind when he led the design of a new material called UBMOF-1. The material — a metal-organic framework, or “MOF” — is a hole-filled crystal that could act as a sponge, capturing molecules of specific sizes and shapes in its pores.

Swiss cheese-like MOFs are not new, but Benedict’s has a couple of remarkable qualities:

• The crystal’s pores change shape when hit by ultraviolet light. This is important because changing the pore structure is one way to control which compounds can enter or exit the pores. You could, for instance, soak up a chemical and then alter the pore size to prevent it from escaping. Secure storage is useful in applications like drug delivery, where “you don’t want the chemicals to come out until they get where they need to be,” Benedict says.

• The crystal also changes color in response to ultraviolet light, going from colorless to red. This suggests that the material’s electronic properties are shifting, which could affect the types of chemical compounds that are attracted into the pores.

Benedict’s team reported on the creation of the UBMOF on Jan. 22 in the journal Chemical Communications. The paper’s coauthors include chemists from UB and Penn State Hazleton.

“MOFs are like molecular sponges — they’re crystals that have pores,” Benedict said.

“Typically, they are these passive materials: They’re static. You synthesize them, and that’s the end of the road,” he added. “What we’re trying to do is to take these passive materials and make them active, so that when you apply a stimulus like light, you can make them change their chemical properties, including the shape of their pores.”

Benedict is a member of UB’s New York State Center of Excellence in Materials Informatics, which the university launched in 2012 to advance the study of new materials that could improve life for future generations.

To force UBMOF-1 respond to ultraviolet light, Benedict and colleagues used some clever synthetic chemistry.

MOF crystals are made from two types of parts — metal nodes and organic rods — and the researchers attached a light-responsive chemical group called a diarylethene to the organic component of their material.

Diarylethene is special because it houses a ring of atoms that is normally open but shuts when exposed to ultraviolet light.

In the UBMOF, the diarylethene borders the crystal’s pores, which means the pores change shape when the diarylethene does.

The next step in the research is to determine how, exactly, the structure of the holes is changing, and to see if there’s a way to get the holes to revert to their original shape.

Rods containing diarylethene can be forced back into the “open” configuration with white light, but this tactic only works when the rods are alone. Once they’re inserted into the crystal, the diarylethene rings stay stubbornly closed in the presence of white light.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Catching Proteins in the Act
Scientists can now observe light activated processes in proteins through the use of free-electron x-ray lasers.
'Missing Evolutionary Link' of Natural Drug Source Found
Scripps Florida study finds 'missing evolutionary link' of a widely used natural drug source
New Way of Displaying 3D Molecular Structures
Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Blocking the Waste Disposal Unit
Detailed structure paves the way for more effective cancer therapies.
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
Diamond Light Source Use Quorum Cryo-SEM Preparation System in New Beamline
Quorum Technologies report on the use of their PP3000T cryo preparation system in conjunction with the new beamline development at Diamond Light Source
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!