Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Curves Alter Crystallization

Published: Friday, February 21, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Curved surfaces can dramatically alter the shape of crystals as they form, a previously unseen phenomenon.

Scientists have studied crystallization since the time of Galileo, so it’s easy to imagine there’s nothing new to learn about the process. Harvard researchers might beg to differ.

The finding could have applications ranging from applying coatings to nanoparticles used in industry to aiding in drug delivery, and may even help shed light on how viruses assemble. The work, conducted by researchers at Harvard’s Materials Research Science and Engineering Center and funded by the National Science Foundation, is described in a Feb. 7 paper in Science.

To investigate how curved surfaces affect crystallization, Vinothan Manoharan, the Gordon McKay Professor of Chemical Engineering and a professor of physics, worked with physics postdoc Guangnan Meng to develop a system in which nanoscale colloidal particles were injected into water droplets. As the particles — about 10,000 times larger than atoms or molecules — organized themselves into crystalline structures, researchers were able to observe the process in real time.

“If you have the particles on a flat surface, like a piece of glass, they form a regular lattice, and they’re compact, with no preferred direction for crystal growth,” Manoharan said. “On a curved surface, however, they form a very different pattern. It looks like strips — almost like ribbons — and they branch out from different points.”

Importantly, Manoharan said, researchers found that changing the curvature of the surface — by changing the radius of the water droplet — resulted in changes to the crystalized “ribbons.”

“As the droplet gets less curved, the width of those ribbons gets bigger,” he explained. “That was one of the hints that what we were seeing was the result of the curvature.”

Manoharan stressed that for the new process to work, the crystals need to be able to “feel” the curvature of the structure they grow on.

“This may not occur when we look at crystals made from atoms or molecules because the atoms and molecules are so small compared to the curved surface — they will not feel the curve, just like we don’t feel the curvature of the Earth when we walk around,” he said. “But if you had an atomic or molecular crystal growing on a nanoscale object, then it’s likely it would feel the curve, and when we looked at the literature, we were surprised to find reports of patterns in nanoscale crystals that look a great deal like the structures we saw.”

Though the crystals’ appearance initially seemed similar to that found in snowflakes, Manoharan and Meng believe crystals on curved surfaces form through an entirely different process. The distinctive structure of snowflakes occurs, in part, due to the fact that the crystals form extremely fast, meaning water molecules don’t have time to form more compact structures. By comparison, the crystals created in water droplets by the Harvard team in some cases took hours to form.

Meng and Manoharan brought their results to David Nelson, the Arthur K. Solomon Professor of Biophysics and a professor of physics and applied physics, and applied physics grad student Jayson Paulose. The two were able to create a model that helped explain the structure of the crystals.

“The reason we see these structures is similar to the reason it’s impossible to accurately depict the surface of the Earth on a flat, two-dimensional map,” Manoharan said. “The analogy I like to use is that the crystals are like pieces of paper and you’re trying to somehow use them to gift-wrap a basketball.”

Unlike paper, though, the crystals Manoharan’s team created can’t be creased, and they’re far too brittle to stretch across a curved surface. The result, he said, is that they tear, creating the ribbon structure.

Understanding how the process works could prove invaluable in a host of industrial and pharmaceutical applications.

“Nanoparticles are used in a number of different industries — they can be coated with metals for industrial use, or they can be coated to allow them to enter cells for drug delivery,” he said. “If that coating has some crystallinity to it, our results suggest that it may adopt patterns like those we see here.”

The newly discovered crystallization process might also someday inform study of the mechanics of how the protein shells of viruses assemble.

“Viruses are essentially shells of protein that encapsulate some genetic material,” he said. “One of the open questions in virology today is how that protein shell goes from a disordered state to form the viral capsule, and it’s possible this process we discovered may inform our understanding of that self-assembly process. Of course, in the long term, our hope is that if we can understand that process, we may eventually be able to interrupt it.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Monday, October 05, 2015
Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos