Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Lab Scale Manufacturing Using Continuous Crystallization

Published: Tuesday, April 15, 2014
Last Updated: Tuesday, April 15, 2014
Bookmark and Share
A new METTLER TOLEDO On-demand webinar explores recent research that could revolutionize pharmaceutical production.

In the webinar, in situ Process Analytical Technology (PAT) supported the development of a continuous plug flow crystallization platform that was able to meet production scale capacities in a lab setting while tightly controlling product attributes including particle size and shape distribution as well as yield and purity.

The Company is pleased to present a new installment in its thought-leading on-demand webinar series on Process Analytical Technology (PAT). The presentation, entitled “PAT-Based Design of Continuous Crystallizations,” explores specific methodology using ParticleTrack with Focused Beam Reflectance Measurement (FBRM) technology and related technologies for rapid plug-flow crystallization evaluation. Experiments using this methodology enabled a significant increase in production volume on lab-scale equipment.

Guest presenter Steven Ferguson, Biogen Idec, Cambridge, Massachusetts, developed the experiment series while working on his PhD as part of the Glennon Research Group (SSPC) at University College, Dublin. He also spent time at Novartis/ MIT Center for Continuous Manufacturing and Department of Chemical Engineering, as a post-doctoral associate with a focus on continuous crystallization, isolation and polymorphism.

A plug flow crystallization platform was developed that allowed PAT to be applied in situ via the use of novel flow cells to develop the anti-solvent crystallization of benzoic acid from aqueous ethanol solution. Equivalent tank-based MSMPR crystallizations using a pneumatic slurry transfer were also characterized using PAT. Both methods were then compared to equivalent batch crystallizations to gain their true performance measure.

As expected, continuous crystallization offered significantly intensified production, with approximately the same material generated by ~33 ml plug flow, 9 L MSMPR, and 42, 10,000 L batch crystallizations per annum. Furthermore, non-batch processing enabled production of a wider range of particle sizes and morphologies, with plug flow generating the highest possible supersaturation when feed and anti-solvent streams were perfectly mixed.

Despite its relatively small volume, under optimum conditions the plug flow device proved capable of producing 60 kilos a day of dry, isolated benzoic acid, providing production-scale pharmaceutical development with lab-scale equipment. Screening methodologies to determine if plug flow crystallization is appropriate for a particular chemistry is also explored, as is using FBRM and Particle Vision Microscopy (PVM) to monitor and maximize operating conditions.



Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
CaSR Role in Maintaining Calcium Concentration Uncovered
Georgia State-led study paves way for new therapies in fight against calcium disorders.
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Neutron Analysis of HIV-1 Protease
Neutrons probe structure of enzyme critical to development of next-generation HIV drugs.
Do Germs Cause Type 1 Diabetes?
Germs could play a role in the development of type 1 diabetes by triggering the body’s immune system to destroy the cells that produce insulin, new research suggests.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!