Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Developing Neurons Sense a Chemical Cue

Published: Friday, May 30, 2014
Last Updated: Tuesday, June 03, 2014
Bookmark and Share
An embryo organizes itself into left and right halves as it grows. But a certain set of nerve cells do something unusual: they cross from one side to the other.

Symmetry is an inherent part of development. As an embryo, an organism’s brain and spinal cord, like the rest of its body, organize themselves into left and right halves as they grow. But a certain set of nerve cells do something unusual: they cross from one side to the other. New research in mice delves into the details of the molecular interactions that help guide these neurons toward this anatomical boundary.

In an embryo, a neuron’s branches, or axons, have special structures on their tips that sense chemical cues telling them where to grow. The new findings, by researchers at Memorial Sloan Kettering Cancer Center and The Rockefeller University, reveal the structural details of how one such cue, Netrin-1, interacts with two sensing molecules on the axons, DCC and a previously less well characterized player known as neogenin, as a part of this process.

“Our work provides the first high-resolution view of the molecular complexes that form on the surface of a developing axon and tell it to move in one direction or another,” says Dimitar Nikolov, a structural biologist at Memorial Sloan Kettering. “This detailed understanding of these assemblies helps us better understand neural wiring, and may one day be useful in the development of drugs to treat spinal cord or brain injuries.”

In a developing nervous system, the signaling molecule, Netrin-1, identified by Rockefeller University Professor Marc Tessier-Lavigne and colleagues, can guide neurons by attracting or repulsing them. In the case of axons that cross from one side to the other, extended by so-called commissural neurons, Netrin-1 attracts them toward the middle.

With a technique that uses X-rays to visualize the structure of crystalized proteins, research scientist Kai Xu and colleagues in Nikolov’s laboratory revealed that Netrin-1 has two separate binding sites on opposite ends, enabling it to simultaneously bind to different receptors. This may explain how Netrin-1, which is an important axon-guiding molecule, can affect in different ways neurons that express different combinations of receptors, Nikolov says.

For some time, scientists have known commissural neurons used the receptor molecule DCC to detect Netrin-1. Neogenin has a structure similar to DCC, and this research, described today in Science, confirms neogenin too acts as a sensing molecule for commissural neurons in mammals.
In experiments that complemented the structural work, conducted by Nicolas Renier and Zhuhao Wu in Tessier-Lavigne’s lab, the researchers confirmed that, like DCC, neogenin senses Netrin-1 for the growing commissural neurons in mice.

These neurons are part of the system by which one side of the brain controls movement on the opposite side of the body. As a result, a mutation in the gene responsible for DCC interferes with this coordination, causing congenital mirror movement disorder. People with this disorder cannot move one side of the body in isolation; for example, a right-handed wave is mirrored by a similar gesture by the left hand.

The work also has implications for understanding why DCC, neogenin and other cell-surface receptors come in slightly different forms, called splice isoforms. The structural research revealed these isoforms bind differently to Netrin-1. However, it is not yet clear what this means for neuron wiring, Nikolov says.

“With this structural knowledge, and with the identification of an additional receptor involved in axon guidance in the spinal cord, we are gaining deeper insight into the mechanisms through which neurons make connections that produce a functioning nervous system, as well as the dysfunction that arises from miswiring of connections” says Tessier-Lavigne.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Modular Structure Enables TRCF Protein to Both Halt Transcription and Repair DNA
TRCF binds to both the DNA and the polymerase, and then pushes the polymerase off of the DNA.
Monday, February 27, 2006
Scientific News
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Seeing DROSHA for the First Time
IBS team gets the first glimpse of elusive protein structure.
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Big Moves in Protein Structure Prediction and Design
Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!