Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Diamond Light Source Purchases Multiple Electron Microscopes from FEI

Published: Thursday, June 19, 2014
Last Updated: Thursday, June 19, 2014
Bookmark and Share
The U.K.’s national synchrotron now has a complete cryo-EM workflow for integrative structural biology to explore essential biological questions at the atomic and molecular scale.

FEI has announced its largest order for Life Sciences - Diamond Light Source, one of the most advanced synchrotron light sources in the world, has ordered two Titan Krios™ cryo transmission electron microscopes (TEMs), a Scios™ DualBeam™ FIB/SEM (focused ion beam/scanning electron microscope) and a Talos™ cryo-TEM.

These microscopes form the core of the electron biology facility (EBIC) that will provide Diamond with a complete cryo-electron microscopy (EM) workflow that will be used in conjunction with other structural biology techniques to enable new insights into viruses and cellular proteins.

Professor David Stuart, director for Life Sciences at Diamond Light Source, states, “X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) are extremely powerful techniques that can resolve atomic-scale structure, but can only be applied to a subset of biological molecules and complexes. Cryo-EM can resolve structures down to the sub-nanometer, molecular-scale, and can look at just about anything, including large multimolecular complexes. In the simplest sense, integrative structural biology uses cryo-EM to provide the overview, and XRD and NMR to see the details.”

He adds, “Locating cryo-EM equipment at the synchrotron gives researchers access to a range of advanced capabilities at the same facility. The new Cryo EM centre for biology is being funded by a £15.6 million grant from the Wellcome Trust, the Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC).”

“When the new Cryo-EM centre opens in 2015, the UK’s national synchrotron will house the essential tools needed to carry out a comprehensive and integrated structural biology approach for characterization of viruses and protein complexes,” states Dr. Paul Scagnetti, vice president of FEI’s Science Business Group. “Answers to many of the most important biological questions, from basic biological functions to complicated disease processes, can potentially be discovered by understanding the structure and function of the molecular machines that operate in this spatial regime.”

Integrative structural biology is a rapidly-emerging field that combines general methods including TEM. For this process Diamond’s sophisticated computational capabilities are critical for analyzing the data from individual techniques and combining these results to obtain 3D structural analysis that spans the spatial scale from atoms to large multimolecular entities.

One of the Krios instruments will be dedicated to single particle analysis (SPA), which can resolve structural details down to a few tenths of a nanometer - small enough to identify individual side chains on the amino acid building blocks of proteins.

The other Krios cryo-TEM will be optimized for cellular tomography, which can look at naturally-occurring configurations of molecules in selected regions of whole cells. The Scios DualBeam and Talos cryo-TEM will be part of the sample preparation workflow.

Scagnetti adds, “Diamond Light Source combines an advanced synchrotron with broad and deep technical expertise. Professor David Stuart, who played a leading role in the cryo EM acquisition, is one of the best-known experts in the field of XRD and structural biology. We are delighted to be working with him and to see the fast growing acceptance of cryo-EM into the discipline of integrative structural biology.”

The instruments will be located at Diamond Light Source on the Harwell Science and Innovation Campus near Oxford, United Kingdom. Diamond, a third-generation synchrotron light source, generates high-intensity beams at frequencies that range from microwaves to hard X-rays, providing opportunities for scientific research in a number of disciplines.

The systems will be installed in Q1 2015.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

University of Leeds Expands Structural Biology with Purchase of 2 Cryo-TEMs
The new microscopes in the Astbury Centre for Structural Molecular Biology will enable transformation of research at the University of Leeds, and building of new collaborations in cryo-EM with academic and industrial researchers across the U.K. and Europe.
Thursday, November 12, 2015
Tsinghua University Selects FEI’s Titan Krios Cryo-Electron Microscope
Investment in Titan Krios underscores Tsinghua University’s commitment to leadership in structural biology.
Wednesday, August 26, 2009
UCLA’s New Center for NanoBiology Begins Sub-Nanometer Molecular Imaging with FEI Titan Krios Microscope
FEI’s automated molecular imaging solution will be used to understand the causes of disease.
Friday, August 07, 2009
Scientific News
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
CaSR Role in Maintaining Calcium Concentration Uncovered
Georgia State-led study paves way for new therapies in fight against calcium disorders.
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Neutron Analysis of HIV-1 Protease
Neutrons probe structure of enzyme critical to development of next-generation HIV drugs.
Do Germs Cause Type 1 Diabetes?
Germs could play a role in the development of type 1 diabetes by triggering the body’s immune system to destroy the cells that produce insulin, new research suggests.
Crucial Reaction for Vision Revealed
Scientists have tracked the reaction of a protein responding to light, paving the way for a new understanding of life's essential reactions.
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!