Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Flu’s Mechanisms Clues Uncovered

Published: Tuesday, August 05, 2014
Last Updated: Tuesday, August 05, 2014
Bookmark and Share
Researchers from Rice University and Baylor College of Medicine have analyzed how influenza-related proteins help infect cells.

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice University and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved.

Their computer simulations may lead to new strategies to stop influenza, perhaps even a one-size-fits-all vaccine.

The discovery detailed this week in the Proceedings of the National Academy of Sciences shows the path taken by hemagglutinin, a glycoprotein that rides the surface of the influenza virus, as it releases fusion peptides to invade a host cell.

The release mechanism has been the subject of many theories, but none have explained experimental observations as well as the new work led by biophysicist José Onuchic at Rice and biochemists Qinghua Wang at Baylor and Jianpeng Ma, who has a joint appointment at the two institutions.

The Rice-Baylor team applied protein-folding algorithms developed by Onuchic and his colleagues to analyze how hemagglutinin reconfigures itself as it infects a cell.

Hemagglutinin is completely folded at the start of the process of interest to researchers who study viral infection, Ma said. “It may be the only case known to human beings where a protein starts at a fixed point and literally completely refolds,” he said.

Proteins are the molecular motors that spring from DNA and perform tasks essential to life, and they are the prime focus of study for Onuchic and his colleagues at Rice’s Center for Theoretical Biological Physics (CTBP). The researchers use their energy landscape theory to determine the path an unfolded strand of amino acids takes as it collapses into a final, functional protein. That involves calculating the energetic preferences of every acid in the chain as well as the influence of the surrounding environment as folding progresses.

When Ma met Onuchic a few years ago, he recognized an opportunity. “I told him there’s a very important feature of the viral system that would be ideal for his energy landscape approach.” Ma said.

Researchers have long observed hemagglutinin’s initial and final structures through X-ray crystallography. But because the change happens so quickly, it has been impossible to capture an image of the glycoprotein in transit. Ma said the key to stopping the flu could be to attack these intermediate structures.

Energy landscape theory predicts how a protein will fold no matter how fast it happens. In the case of hemagglutinin, the unfolding and refolding happens in seconds. During the process, part of the protein “cracks” and releases fusion peptides.

“The fusion peptides are the most important part of the molecule,” said Rice postdoctoral researcher and co-author Jeffrey Noel. “The hemagglutinin is attached to the viral membrane, and when these peptides are released, they embed themselves in the target cell’s membrane, creating a connection between the two.”

“The purpose of hemagglutinin is to poke a hole between the two membranes,” Ma said. “They have to fuse so the genetic material will be injected into the human cell.”

Hemagglutinin is recognized by polysaccharide receptors on host cells and is absorbed when the cells engulf it. Initially, part of the protein forms a cap that protects the segments inside.

Acidic conditions cause the cap to fall off, and the protein begins to reconfigure itself. “The release of the fusion peptide, which is initially hidden inside hemagglutinin, is triggered by that giant conformational change,” Ma said.

“When the cap is on, the whole protein is stable,” Noel said. “What we see in the simulation is that the hydrophobic pocket where the fusion peptides are buried is very unstable and wants to crack as soon as the cap comes off.”

By using the experimental structural information from X-ray crystallography to approximate the full energy landscape of hemagglutinin, the researchers can now capture a rough picture of the steps involved in its reconfiguration, including the point at which the peptides are released. “We now, for the first time, have mapped out the entire process, going from state A to state B, and the energetics along the way,” Ma said.

Ma said frequent mutations to the cap help the virus avoid antibodies; this is the reason people need flu shots every year. But he suspects the inner part of the protein is more highly conserved. “We’re targeting the part that the virus cannot afford to change. Therefore, it provides more hope for developing therapeutic agents,” he said. Such agents could lead to a universal flu vaccine that would last a lifetime.

He said the membrane fusion mechanism is widely shared among many biological systems, which makes influenza a good model for studying other diseases. “HIV has one. Ebola has one. And it’s also shared by intercell transport in the nervous system,” Ma said.

He noted the work could not have been done without CTBP, which moved to Rice from the University of California, San Diego, three years ago to take advantage of collaborations with Texas Medical Center researchers – one of Rice’s Priorities for the New Century. “This demonstrates a very interesting collaboration between TMC and Rice,” Ma said. “We’re very happy with that.”

The paper’s co-authors are Rice graduate students Xingcheng Lin and Nathanial Eddy, and Paul Whitford, an assistant professor at Northeastern University in Boston. Onuchic is Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy and co-director of the CTBP based at Rice’s BioScience Research Collaborative. Ma is a professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at Baylor. Wang is an assistant professor of biochemistry and molecular biology at Baylor.

The National Science Foundation (NSF), the Welch Foundation, the National Institutes of Health, the Gillson-Longenbaugh Foundation and the Cancer Prevention Research Institute of Texas supported the research.

The researchers utilized the Data Analysis and Visualization Cyberinfrastructure (DAVinCI) supercomputer supported by the NSF and the BlueBioU supercomputer, both administered by Rice’s Ken Kennedy Institute for Information Technology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Worm Virus Details Come to Light
Rice University scientists have won a race to find the crystal structure of rare nematode virus, known to infect the most abundant animal on Earth.
Wednesday, August 20, 2014
Scientific News
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Advancing Cancer Drug Design with Image of Key Protein
Scientists have pioneered the use of a high-powered imaging technique to picture in exquisite detail one of the central proteins of life – a cellular recycling unit with a role in many diseases.
Mould Unlocks New Route to Biofuels
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.
'Invisible' Protein Structure Explains the Power of Enzymes
A research group at Umeå University in Sweden has managed to capture and describe a protein structure that, until now, has been impossible to study.
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Blueprinting Cell Membrane Proteins
Recent breakthrough will make the blueprinting process faster, easier and cheaper, and should have major implications in the field of drug discovery and development.
Bacteria Use Chemical Harpoons to Hold on Their Hosts
Researchers reveal how a common disease causing bacteria latches on to the body during an infection.
Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Near-Atomic Resolution of Protein Structure Holds Promise for Drug Discovery
A new study shows that it is possible to use an imaging technique called cryo-electron microscopy to view the architecture of a metabolic enzyme bound to a drug that blocks its activity.
X-ray Study May Aid in Designing Better Blood Pressure Drugs
New atomic-scale details could help create more effective medications with fewer side effects.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!