Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Investment in New Capability for Materials Analysis

Published: Thursday, August 07, 2014
Last Updated: Thursday, August 07, 2014
Bookmark and Share
Johnson Matthey, Oxford University, Diamond Light Source announce the creation a state-of-the-art materials characterisation facility at the Harwell Science and Innovation Campus.

This world class site is close to both Oxford University and Johnson Matthey’s Sonning Common Research laboratories and is home to Diamond, the UK’s synchrotron science facility, where currently 24 experimental stations (beamlines) are operational with funding in place to increase this number to 33 by 2018.  

As part of Diamond’s pioneering hard X-ray nanoprobe beamline (I14) and electron microscopy centre, Johnson Matthey and Oxford University will each contribute cutting-edge microscopes from JEOL to support research in the Physical Sciences. These microscopes will complement two other advanced electron microscopes that will also be built at the new centre as part of a National Facility for Cryo-Electron Microscopy. Overall, the new centre will offer unrivalled facilities for research across the biological and physical sciences.

The hard X-ray nanoprobe will take structural analysis with detailed element mapping to the highest spatial X-ray resolution available anywhere in the world. Oxford University will bring a unique JEOL 300kV electron microscope dedicated to atomic scale imaging at world-leading resolution and Johnson Matthey will install a world-leading JEOL double-EDX and EELS capable microscope dedicated to chemical analysis with atomic scale resolution.  Collaborations between Johnson Matthey, Oxford University and Diamond’s I14 beamline will facilitate the interchange of samples between these systems and enable analyses at near-duty catalytic conditions to observe the influence of chemical and thermal challenges on material structure.

Commenting on this development: Dr Elizabeth Rowsell (Director, Johnson Matthey Technology Centre) said “This is an exciting development for Johnson Matthey research, we chose to bring our investment to Diamond’s I14 beamline to further strengthen our extensive collaborations in advanced characterisation”; Professor Angus Kirkland (Oxford University) said “This facility will provide a world class capability for materials imaging and our collaboration with Johnson Matthey will bring real problems into focus and pose new questions.

The combination of the 2 electron microscopes with the Nanoprobe will deliver unique insights and Diamond will provide the best possible environment to enable scientific interaction”; Professor Andrew Hamilton, (Vice-Chancellor of Oxford University), said: “Bringing together these powerful instruments in one place will be hugely beneficial to researchers, both in academia and industry, who are studying materials at the atomic scale. This new facility could lead to advances in many exciting research areas including graphene technology and the development of cleaner, greener fuels.”

Professor Andrew Harrison (CEO Diamond Light Source) said “We welcome closer engagement with UK companies such as JM. This development is part of a more general trend to develop strategic partnerships with industry and university, often underpinned by investment in complementary equipment or people, to exploit more fully our synchrotron facilities”;

Mr. Koichi Fukuyama (Director JEOL Europe) said “This is a wonderful opportunity for JEOL and we are excited to be supporting the advanced characterisation research facilities that are being planned for the benefit of both academic and industrial scientists from the UK and beyond.”   

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New UK Facility to Accelerate Drug Discovery
Diamond’s on-site fragment screening facility a major boost for structural biologists.
Thursday, November 26, 2015
Lighting Up A New Path For Novel Synthetic Polio Vaccine
Crystal structures and electron microscopy images are being used to develop a vaccine to target the polio virus.
Monday, February 16, 2015
Diamond Celebrates a Glittering Year of Crystallography
From film premieres to major scientific breakthroughs, Diamond Light Source helped make the International Year of Crystallography a memorable event.
Tuesday, December 23, 2014
Scientists Gain First Glimpse of One of Nature’s Measuring ‘Rulers’
New findings offer potential to outsmart bacterial infections.
Tuesday, December 16, 2014
Scientists Discover Bacteria’s Clever Defence Mechanism
Structure of EzrA protein could help identify new antibiotic targets.
Tuesday, November 18, 2014
Scientists Uncover Bacterial War Tactics
The discovery paves the way for new drugs to fight bacterial infections.
Tuesday, April 08, 2014
Novel Crystallography Beamline Takes Delivery of in Vacuum X-Ray Detector
The Diamond Light Source beamline will facilitate challenging research on DNA, RNA, native proteins and other building blocks of life.
Friday, April 04, 2014
‘Big Science’ uncovers another piece in the Alzheimer’s puzzle
Evidence found of the possible cause of brain-cell-damaging toxic iron.
Thursday, March 27, 2014
Year of Glittering Celebrations begins at Diamond Light Source
Activity to showcase 100 years of crystallography.
Tuesday, February 04, 2014
Funding Announced for New Biological Facilities at Diamond Light Source
Landmark silver doughnut-shaped building on the Harwell Campus has been granted £15.6 million for a new imaging centre for biology.
Friday, December 13, 2013
Smart New In Situ Tool Keeps X-Rays on Track
Diamond Light Source and the University of Manchester have successfully built a new beam imaging instrument, the Lancelot X-ray Beam Position Monitor (XBPM).
Friday, October 25, 2013
Scientists Unlock Structure of Elusive ‘Stress’ Protein
New discovery paves the way for a transformation in drug treatments for depression, diabetes and osteoporosis.
Friday, July 19, 2013
Diamond Sheds Light on Basic Building Blocks of Life
The UK’s national synchrotron facility, Diamond Light Source, is now the first and only place in Europe where pathogens requiring Containment Level 3 can be analysed at atomic and molecular level using synchrotron light.
Tuesday, February 19, 2013
Science Minister Shines Light on World’s Biggest Synchrotron Stage
On Thursday 2nd December, David Willetts MP, Minister for Universities and Science, will visit Diamond Light Source, the UK’s national synchrotron science facility, and officially open a unique new research station that can create molecular-scale 3D images of large objects such as aerospace and engineering components, and explore their structure in atomic-scale detail.
Thursday, December 02, 2010
Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos