We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Diamond Light Source Announce Launch of ePSIC

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 3 minutes

Industry, press and leading scientists have gathered for the opening of a pioneering new centre for the study of nanoscale materials located at Diamond Light Source in Oxfordshire. The launch of this unique centre is set to boost the UK’s world-leading science and technology infrastructure. 

Oxfordshire’s cutting-edge electron Physical Sciences Imaging Centre (ePSIC) is the result of collaboration between a research facility, academia and industry. Diamond Light Source, the UK’s synchrotron, partnered with the University of Oxford and the global speciality chemicals company, Johnson Matthey to bring a unique set of tools to the centre. Funding for the construction of the new Diamond building housing ePSIC included contributions from the Wellcome Trust, the Biotechnology and Biological Sciences Research Council and a £2M contribution from the Science and Technology Facilities Council. 

The internationally leading centre for UK science contains two state-of-the-art electron microscopes for the physical sciences, designed to provide scientists with atomic level images in a range of technologically important materials. 

Robert MacLeod, Chief Executive of Johnson Matthey said: “We are excited to be part of this unique collaboration for UK science. R&D is at the heart of our future success and this new electron microscope will enable Johnson Matthey’s scientists to actually ‘see’ and analyse individual atoms in real time within the structure of our materials. This unrivalled capability in physical sciences is crucial for us in driving innovation in new and existing products for our customers.” 

This information can be used to develop enhanced ‘smart’ materials for use in consumer technology, next-generation transportation and engineering. The advanced tools can not only give a way to visualise at atomic-resolution scales but could also help address some of the great technology and engineering challenges of our time. 

Angus Kirkland, Professor of Materials at the University of Oxford and Science Director at ePSIC, said: “This centre will provide a world class capability for materials imaging and the collaboration with Johnson Matthey will bring technologically important problems into focus and answer fundamental research questions.” 

The Vice-Chancellor of the University of Oxford, Professor Louise Richardson, said: “ePSIC is a powerful expression of what we can achieve when universities, research facilities and industry work in close partnership. Hosting these path-breaking technologies here in Oxfordshire will assist scientists with their pioneering research, helping them translate their ideas into breakthroughs which benefit us all.” 

ePSIC’s two electron microscopes will provide top of the line resolution down to 0.5 Angstroms for research groups looking to determine the atomic structure and characteristics of materials. Advanced tools such as this are expensive so it is important that they become accessible in a centralised way and thereby provide tangible benefits to the wider science community. Academic scientists from around the world will be able to access the centre’s tools following peer review. This will ensure that ePSIC is attracting the best science and supporting some of the most promising research projects in the field. 

Prof Andrew Harrison, CEO at Diamond, explained: “Diamond is a world-leading centre for visualising physical and biological materials at the atomic and molecular level and it makes sense to complement our capabilities with electron microscopy. Information gained will give us microscopic properties and valuable insight into the electronic structure of materials, strength and much more. The centre will be opened to all and will operate like our beamlines, through both academic peer review and proprietary access. As a result, the Diamond synchrotron will become the first in the world to house such a complementary set of techniques.” 

Unveiling a plaque to commemorate the official opening; Sir John Meurig Thomas, formerly Director of the Royal Institution of Great Britain said; "This unique facility brings together academia, industry and government research laboratories in a fantastically advanced manner and marks an exceptionally exciting period for British, European and World science.  It is highly appropriate that these new state of the art electron microscopes are located, not more than 17 miles away, from where in 1664 Robert Hook published his 'Micrographia', the first important work on microscopy (the study of minute objects by means of a microscope). He stated that it is the prerogative of all humans above all creatures to behold, consider, compare, alter, asses and improve on the works of nature. This is the recipe for going from pure to applied science. This facility will continue his work and give us many new and invaluable insights into the invisible world."

Accompanying the two microscopes for the physical sciences, the facility will also contain microscopes to support research in the life sciences. Known as eBIC (the electron Bio-Imaging Centre), this complementary centre will provide similar tools to ePSIC for cryo-electron microscopy research into biological matter, such as viruses and bacteria. 

The microscopes will be housed alongside Diamond’s I14 hard X-ray nanoprobe beamline which uses X-rays to probe similar materials. The close proximity of the three separate research endeavours – ePSIC, eBIC and I14 – will promote a holistic, interdisciplinary approach to nanoscale research, promoting synergies and opportunities for collaboration between the different disciplines across academic and industrial users. 

Angus Kirkland concluded: “The combination of electron microscopes for both the life and physical sciences together with the I14 hard X-ray nanoprobe beamline will provide a unique capability and the location at Diamond will provide the best possible environment to promote scientific interaction.”