Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Getting Wise to the Influenza Virus’s Tricks

Published: Tuesday, May 06, 2008
Last Updated: Tuesday, May 06, 2008
Bookmark and Share
A high-resolution image of an influenza virus protein opens the way to design new anti-viral drugs.

Influenza is currently a grave concern for governments and health organizations around the world. The worry is the potential for highly virulent bird ’flu strains, such as H5N1, to develop the ability to infect humans easily. New drugs and vaccines to halt the spread of the virus are badly needed.

Now one of the tactics used by influenza virus to take over the machinery of infected cells has been laid bare by structural biologists at the European Molecular Biology Laboratory (EMBL) and the joint Unit of Virus Host-Cell Interaction of EMBL, the University Joseph Fourier and National Centre for Scientific Research (CNRS), in Grenoble, France.

In the current issue of Nature Structural and Molecular Biology they publish a high-resolution image of a key protein domain whose function is to allow the virus to multiply by hijacking the host cell protein production machinery. The findings open the way for the design of new drugs to combat future influenza pandemics.

Upon infection the influenza virus starts multiplying in the cells of its host. One protein that is crucial in this process is the viral polymerase - the enzyme that copies its genetic material and helps to produce more viruses. One component of the polymerase, called PB2, plays a key role in stealing an important tag from host cell RNA molecules to direct the protein production machinery towards the synthesis of viral proteins.

Researchers of the groups of Stephen Cusack and Darren Hart at EMBL Grenoble have identified the PB2 domain responsible for binding the tag, produced crystals of it and examined them with the powerful X-ray beams of the European Synchrotron Radiation Facility (ESRF).

“Viruses are masters of cunning when it comes to hijacking the normal functioning of the host cell. The influenza virus steals a password from host messenger RNAs, molecules that carry the instructions for protein production, and uses it to gain access to the cell’s protein-making machinery for its own purposes,” says Cusack.

The password is a short extra piece of RNA, a modified RNA base called a ‘cap’, which must be present at the beginning of all messenger RNAs (mRNAs) to direct the cell's protein-synthesis machinery to the starting point. The viral polymerase binds to host cell mRNA via its cap, cuts the cap off and adds it to the beginning of its own mRNA – a process known as ‘cap snatching’. The capped viral mRNA can then be recognized by the host cell machinery allowing viral proteins to be made, at the expense of host cell proteins.

The atomic resolution image the EMBL scientists generated of a PB2 domain bound to a cap reveals for the first time the individual amino acids responsible for recognizing this special structure. The central interaction is a sandwich with two PB2 amino acids stacking either side of the cap. Whilst this recognition mechanism is similar to other cap-binding proteins, its structural details are distinct.

Collaborators at the Centro Nacional de Biotecnologia in Madrid showed that disruption of the PB2 cap-binding site prevents the influenza virus from replicating.

“These findings suggest that the PB2 cap-binding site is a very promising target for anti-influenza drugs,” Hart says. “Our new structural insights will help us design mimics of the cap that would inhibit viral replication and hence reduce the spread of virus and the severity of the infection.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Seeing DROSHA for the First Time
IBS team gets the first glimpse of elusive protein structure.
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Big Moves in Protein Structure Prediction and Design
Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins.
Pushing Drug Discovery Forward
A new study, led by scientists at The Scripps Research Institute (TSRI), shows how different pharmaceutical drugs hit either the “on” or “off” switch of a signaling protein linked to asthma, obesity and type 2 diabetes.
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!