Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Molecular Movies to Reveal the Dynamic Lives of Proteins

Published: Tuesday, July 01, 2008
Last Updated: Tuesday, July 01, 2008
Bookmark and Share
Capturing moving images of tiny protein molecules is the aim of a new research project announced at Imperial College London.

Capturing moving images of tiny protein molecules is the aim of a new research project announced at Imperial College London. The research will reveal, on extremely short timescales, the miniscule movements of proteins which help carry out important biological processes in people, animals, insects and plants.

The one million euro study, funded by the European Research Council, will focus on one particular group of proteins called light receptor proteins. Researchers will examine what happens when these proteins are hit with a pulse of bright laser light, and will record moving images of the results.

Light receptor, or 'photoreceptor', proteins trigger important biological responses to light. The human photoreceptor proteins which the researchers will study are involved in maintaining the body's internal 24 hour clock which governs sleep cycles in relation to day and night, and have significant biomedical importance.

The researchers will also study plant light receptor proteins which help plants bend towards the sun, and are involved in photosynthesis - the process by which sunlight is converted into energy.

The new funding will allow scientists to bring together two different types of imaging technology to look at both vibrations and motions on extremely short timescales, for the first time in the UK. This will enable the scientists to record how the molecular structures of these types of proteins change when they are 'at work'.

Recipient of the new grant, Dr Jasper van Thor from Imperial College London's Department of Life Sciences, explains why capturing dynamic 'movies' of these proteins is important:

"Although much is known about the structure of these types of proteins when they're in a static state, few experiments have been carried out to understand exactly what happens on a molecular level when they're 'activated' by light and start moving around doing their jobs.

"We hope that getting a dynamic, moving picture of how these proteins work will give us a greater understanding than ever before of how these important biological processes happen."      

Dr van Thor's grant will be used to fit out a new laser laboratory at Imperial for 'pump-probe' experiments. In these experiments, the light receptor protein molecules will be stimulated, or 'pumped', into activity by a laser, and then their movements and structural changes recorded by a very fast spectroscopic 'probe' for analysis.

This probe will give the scientists a moving image which will reveal more about the structure of the proteins than a stationary snapshot would.

The second type of technology that Dr van Thor and his colleagues will use to capture images of the proteins in action is extremely powerful x-rays produced in synchrotron facilities.

In these experiments, the scientists will again use a laser pump to activate the proteins, but here they will use a very fast pulsed x-ray probe to record to the moving images. The combination of these two techniques will give Dr van Thor a comprehensive set of moving images of the light receptor proteins at work.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UK Team Reveals All Three Structures of a Single Transporter Protein
A team of researchers has captured the 3D atomic models of a single transporter protein in each of its three main structural states.
Friday, April 30, 2010
A new Chair in Biophysics Created at Imperial College London
Chair in Biophysics has been created in memory of Professor David Blow, the 'founding father of biophysics'.
Friday, February 03, 2006
Research Showing How Drugs Stick to a Key Protein
This information should help scientists to modify the structures of drugs to improve their effectiveness.
Monday, October 17, 2005
Scientific News
A New Way to Look at MOFs
International study challenges prevailing view on how metal organic frameworks store gases.
Major Advance in Crystal Structure Prediction Methods
The Cambridge Crystallographic Data Centre (CCDC) announces that the results of its 6th blind test of crystal structure prediction methods demonstrate significant advancement in in comparison with previous tests.
Protein Structure Discovery Opens Window on Basic Life Process
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Structure of Protein at Root of Muscular Disease Decoded
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
First Complete Structural Study Of A Pegylated Protein
Significant data obtained at NUI Galway reports first crystal structure of a protein modified with a single PEG chain.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos