Corporate Banner
Satellite Banner
Crystallography
Scientific Community
 
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Crouching Protein, Hidden Enzyme
A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
3D Images of Enzymes May Lead to Improved Antibiotics
Research advances understanding of how crucial proteins function.
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Seeing DROSHA for the First Time
IBS team gets the first glimpse of elusive protein structure.
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Pioneering Brain Cancer Technique Could Lead to Better Prognosis for Patients
4,000th paper published from Diamond research could improve outcomes for brain cancer sufferers.
Big Moves in Protein Structure Prediction and Design
Custom design with atomic level accuracy enables researchers to craft a whole new world of proteins.
Pushing Drug Discovery Forward
A new study, led by scientists at The Scripps Research Institute (TSRI), shows how different pharmaceutical drugs hit either the “on” or “off” switch of a signaling protein linked to asthma, obesity and type 2 diabetes.
Solved Structure of S. pneumoniae Enzyme Could Lead to New Antibiotics
Scientists solve structure of a key bacterial enzyme from streptococcus pneumoniae: a major cause of bacterial meningitis, bronchitis, ear infection and pneumonia.
Scroll Up
Scroll Down

The Forced Degradation (De-esterification) of Parabens Using a Microreactor Flow System
Bookmark and Share

Syrris Ltd

Product degradation studies are an important test for any pharmaceutical or other high value active material. These experiments generally expose the material to an external stress to assess the stability of the constituents or formulation. External stresses may include temperature, pH, light, moisture, and even exposure to other materials within the product formulation, and their degradation products.

Conventionally, degradation tests can take very long periods of time, because standard testmethods require the materials to be exposed to stress factors for periods of weeks or longer, andthen tested using standard analytical methods.

Accelerated testing is of clear benefit. Use of elevated temperature to increase the rate ofinteractions is the most powerful factor to shorten the length of time required for these tests.However, conventional batch techniques are of limited use for such accelerated testing, as theapproach is not readily amenable to carrying out a wide range of tests at varying temperature and storage time. It is also difficult to achieve temperatures near or beyond reflux without specialprecautions; achieving such temperatures is typically required to achieve significant rateacceleration.

An ideal forced degradation test system would have a number of useful properties:

  • Ability to accelerate tests by a factor of 10 to 100 fold or more (e.g. 1 hour to 1 minute = 60 fold)
    • Requires holding sample at temperatures well above reflux
  • Ability to process and manage multiple samples under multiple times and temperatures
    • Requires sample introduction, tracking and storage capability
  • Ability to introduce a range of contaminant materials
    • Requires injection and mixing systems
  • Ability to introduce other stresses
    • Requires capability to expose to light, etc.
  • Ability to sample automatically and collate data
    • Requires integrated analytical capability

Flow systems are ideal for this application, as they meet all of the above requirements in acompact and integrated instrument. A further benefit is that the use of microreactors allows teststo be performed with very small amounts of material, reducing cost and storage space.

This application note describes the use of an Africa flow system to conduct a forced degradationstudy on a series of Parabens (common pharmaceutical preservatives). Solutions of methyl, ethyland propyl paraben are susceptible to de-esterification in the presence of alkali. The flow reactorsystem allows several different levels of exposure to be investigated within a single experiment.Variables such as concentration, temperature and reaction time can be changed to determine thestability of the paraben. A major advantage of the Africa flow system is that the pressureregulation of the system means that temperatures beyond the boiling points of reaction solventscan be used. In these experiments the concentrations of the reactants was held constant whilstboth reaction time and temperature were varied.

Further Information

Related Content

Rapid Interconnection, Control and Logging of Multiple Synthesis Reaction Parameters
New Atlas Six Way Socket connects multiple sensor nodes.
Monday, October 12, 2009
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!