" "
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Ultra Low Level Biodetection Achieved by Dublin Researchers

Published: Friday, July 20, 2012
Last Updated: Friday, July 20, 2012
Bookmark and Share
Detection and measurement of biological analytes by using qNano instrument.

Researchers at the Lee Bionanosciences Laboratory at UCD in Dublin have demonstrated the detection and measurement of biological analytes down to femtomolar concentration levels using an off the shelf qNano instrument.

This ultra low level biodetection capability has implications for biomedical research and clinical development as trace amounts of a biological substance in a sample can now be detected and quantified using standard commercially available equipment.

The findings by Dr. Mark Platt (Loughborough University and formerly University College Dublin), Professor Gil Lee, (University College Dublin) and Dr. Geoff Willmott (MacDiarmid Institute, New Zealand) have been published in Small, the peer-reviewed journal on micro- and nanoscales science.

Platt and colleagues’ method for femtomolar-level detection uses magnetic particle systems and can be applied to any biological particle or protein for which specific antibodies or aptamers exist.

Resistive pulse sensing, the underlying technology of the qNano, was used to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes.

The authors say, “The strength of using the qNano is its simplicity and the ability to interrogate individual particles through a nanopore. This allowed us to establish a very sensitive measurement of concentration because we could detect the interactions occurring down to individual particle level.”

The unique and technically innovative approach of the authors was to detect a molecule’s presence by a process that results in end on end or side by side aggregation of rod shaped nickel-gold particles.

The rods were designed so that any specific aptamer could be attached to one end only.

“By comparing particles of similar dimensions we demonstrated that the resistive pulse signal is fundamentally different for rod and sphere-shaped particles, and for rod shaped particles of different lengths. We could exploit these differences in a new agglutination assay to achieve these low detection levels,” says Dr. Platt.

In the agglutination assay particles with a particular aspect ratio can be distinguished by two measurements: the measured drop in current as particles traverse the pore ( ∆ip ), which reveals the particle’s size, and the full width at half maximum (FWHM) duration of the resistive pulse, which relates to the particle’s speed and length.

Limits of detection down to femtomolar levels were thus able to be demonstrated.

The article “Resistive Pulse Sensing of Analyte-Induced Multicomponent Rod Aggregation Using Tunable Pores” Platt, M., Willmott, G. R. and Lee, G. U. (2012), Small. doi: 10.1002/smll.201200058 is online for subscribers at http://onlinelibrary.wiley.com/doi/10.1002/smll.201200058/abstract.

“This is a real milestone for Izon’s technology as being able to measure biomolecules down to these extremely low levels opens up new bio-analysis options for researchers. 10 femtomolar was achieved, which is the equivalent dilution to 1 gram in 3.3 billion litres, or 1 gram in 1300 Olympic sized swimming pools,” says Hans van der Voorn, Executive Chairman of Izon Science.

Izon Science will continue to work with Dr. Platt at Loughborough, and with University College Dublin and various customers to develop a series of diagnostic kits that can be used with the qNano to identify and measure biomolecules, viruses, and microvesicles.

“We’re now developing standardized diagnostics kits for researchers which will allow them to optimize protocols for their particular targets of interest. The interest is in accurate quantification as much as the core detection,” says van der Voorn.

Izon Science is the developer of the portable qNano and qViro-X instruments with unique size-tunable nanopores.

The multi-parameter instruments offer significant accuracy and reliability improvements over light based techniques and are advancing research in a number of fields including nanomedicine, hematology, gene therapy and vaccine development.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Preparing for Potential Zika Outbreaks
Experts at the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) are developing tools to monitor the spread of the Zika virus and are conducting research to gather more solid data to better assess the risks associated with the infection.
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!