Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Synthetic Protein Could Lead Doctors to Tumors

Published: Wednesday, September 05, 2012
Last Updated: Wednesday, September 05, 2012
Bookmark and Share
Technique using ultraviolet light may lead to new type of diagnostic imaging technology.

Johns Hopkins researchers have created a synthetic protein that, when activated by ultraviolet light, can guide doctors to places within the body where cancer, arthritis and other serious medical disorders can be detected.

The technique could lead to a new type of diagnostic imaging technology and may someday serve as a way to move medications to parts of the body where signs of disease have been found. In a study published in the Aug. 27-31 Online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported success in using the synthetic protein in mouse models to locate prostate and pancreatic cancers, as well as to detect abnormal bone growth activity associated with Marfan syndrome.

The synthetic protein developed by the Johns Hopkins team does not zero in directly on the diseased cells. Instead, it binds to nearby collagen that has been degraded by various health disorders. Collagen, the body's most abundant protein, provides structure and creates a sturdy framework upon which cells build nerves, bone and skin. Some buildup and degradation of collagen is normal, but disease cells such as cancer can send out enzymes that break down collagen at an accelerated pace. It is this excessive damage, caused by disease, that the new synthetic protein can detect, the researchers said.

"These disease cells are like burglars who break into a house and do lots of damage but who are not there when the police arrive," said S. Michael Yu, a faculty member in the Whiting School of Engineering’s Department of Materials Science and Engineering. "Instead of looking for the burglars, our synthetic protein is reacting to evidence left at the scene of the crime," said Yu, who was principal investigator in the study.

A key collaborator was Martin Pomper, a School of Medicine professor of radiology and co-principal investigator of the Johns Hopkins Center of Cancer Nanotechnology Excellence. Pomper and Yu met as fellow affiliates of the Johns Hopkins Institute for NanoBioTechnology. "A major unmet medical need is for a better non-invasive characterization of disrupted collagen, which occurs in a wide variety of disorders," Pomper said. "Michael has found what could be a very elegant and practical solution, which we are converting into a suite of imaging and potential agents for diagnosis and treatment."

The synthetic proteins used in the study are called collagen mimetic peptides or CMPs. These tiny bits of protein are attracted to and physically bind to degraded strands of collagen, particularly those damaged by disease. Fluorescent tags are placed on each CMP so that it will show up when doctors scan tissue with fluorescent imaging equipment. The glowing areas indicate the location of damaged collagen that is likely to be associated with disease.

In developing the technique, the researchers faced a challenge because CMPs tend to bind with one another and form their own structures, similar to DNA, in a way that would cause them to ignore the disease-linked collagen targeted by the researchers.

To remedy this, the study's lead author, Yang Li, synthesized CMPs that possess a chemical "cage" to keep the proteins from binding with one another. Just prior to entering the bloodstream to search for damaged collagen, a powerful ultraviolet light is used to "unlock" the cage and allow the CMPs to initiate their disease-tracking mission. Li is a doctoral student from the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. Yu, who holds a joint appointment in that department, is his doctoral adviser.

Yu's team tested Li's fluorescently tagged and caged peptides by injecting them into lab mice that possessed both prostate and pancreatic human cancer cells. Through a series of fluorescent images taken over four days, researchers tracked single strands of the synthetic protein spreading throughout the tumor sites via blood vessels and binding to collagen that had been damaged by cancer.

Similar in vivo tests showed that the CMP can target bones and cartilage that contain large amounts of degraded collagen. Therefore, the new protein could be used for diagnosis and treatment related to bone and cartilage damage. Although the process is not well understood, the breakdown and rebuilding of collagen is thought to play a role in the excessive bone growth found in patients with Marfan syndrome. Yu's team tested their CMPs on a mouse model for this disease and saw increased CMP binding in the ribs and spines of the Marfan mice, as compared to the control mice.

Funding for the research was provided by the National Science Foundation, the National Institutes of Health and the Department of Defense. The synthetic protein process used in this research is protected by patents obtained through the Johns Hopkins Technology Transfer Office.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

'Jumping Genes' Unusually Active In Many GI Cancers
Rogue gene insertions could one day speed diagnosis.
Wednesday, August 19, 2015
New Way of Preventing Diabetes-Associated Blindness
Researchers have discovered a potential treatment for the most common cause of lose of vision in working age adults in the U.S.
Wednesday, May 27, 2015
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Algorithm Interprets Breathing Difficulties to Aid in Medical Care
Researchers from North Carolina State University have developed an efficient algorithm that can interpret the wheezing of patients with breathing difficulties to give medical providers information about what’s happening in the lungs.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Genetic Test Could Improve Blood Cancer Treatment
Testing for genetic risk factors could improve treatment for myeloma – a cancer of the blood and bone marrow – by helping doctors identify patients at risk of developing more aggressive disease.
PTR-MS Breath Test Shows Potential for Detecting Liver Disease
Researchers at the University of Birmingham have published results that suggest a non-invasive breath test for liver disease using an IONICON PTR-MS.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!