Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

University of Cincinnati Announces Microfluidic Breakthroughs

Published: Wednesday, October 31, 2012
Last Updated: Wednesday, October 31, 2012
Bookmark and Share
Using something called “inertial microfluidics,” scientists are able to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size vs. other biomarkers.

This method could reduce analysis time and increase selectivity while reducing reliance on antibody-based testing in clinical tests.

Ian Papautsky, associate professor in UC’s School of Electronic and Computing Systems (SECS), part of the College of Engineering and Applied Science, and a UC team are leading these research efforts.

In a paper titled “Continuous Rare Cell Extraction Using Self-Releasing Vortex in an Inertial Microfluidic Device” by Papautsky and co-authors Xiao Wang, UC doctoral student, and Jian Zhou, research associate, a new concept for separation of rare cells, such as prostate cancer cells or circulating tumor cells, using microfluidics, is detailed.

“Last year we showed we can selectively isolate prostate cancer cells, but only by running small sample volumes one at a time. Now we show that we can do this continuously,” Papautsky said. “This is exciting because it allows for an entire blood draw to be processed, in continuous matter, in a shorter period of time.”

These blood draws can be used to identify tumor cells for diagnostic or prognostic purposes. “Our approach is based purely on size. It doesn't rely on antibodies, which is important because not all cancer cells express antigens. So, if the cancer cells are, let's say, larger than 20 microns, we'll extract them,” he explained.

The most common approach for looking for these circulating tumor cells is via a system that uses a selection using antibodies to detect antigens. “We could also use our device to prepare samples for systems that use antibody-based selection.” This combined approach could potentially help reduce occurrence of false positives while significantly increasing the accuracy of the antibody-based tests.

Another area in which this device could be useful is in working with cell cultures. “If you have a mixture of multiple cells where some cells are small and other cells are big, we could separate these cell populations very easily,” Papautsky explained. “Anytime you need to separate based on size, we can do it using inertial microfluidics.”

The advantage of inertial microfluidics in cell separation is that it can be done easily and without cumbersome equipment. This research is leading to an entirely new generation of testing capabilities which particularly lend themselves to direct use in the field and in physicians’ offices in just about any country and any economic setting.

In another paper, titled “Sorting of Blood in Spiral Microchannels” Papautsky and doctoral student Nivedita Nivedita demonstrate continuous sorting of blood utilizing inertial microfluidics via a simple passive microfluidic device. Papautsky’s lab has been developing the concept of using inertia to manipulate cells and particles during the last few years. “It's truly different and innovative because these microfluidic devices are really low cost while offering very high throughput,” said Papautsky.

The device is, essentially, a clear, plastic, flexible square that is relatively small in size, at about a half an inch across, but big in concept. “With this particular device we can take a drop of blood, put it in the input port in the center, and separate,” Papautsky explained. The device contains four outlet ports which separate the blood into different streams, allowing the collection of outputs containing dilute plasma, red blood cells and white blood cells.

“There are a lot of clinical diagnostic tests that are based on blood,” he said. One of the most common tests that are done in a hospital is the complete blood count (CBC). Through this test, a wide range of conditions like anemia, malaria or leukemia are diagnosed. “In all of these diagnostic tests, blood must be separated into its components, and that's what this device does,” Papautsky explained. “So, instead of using a big centrifuge to do it, we can do it with this little device.” Using the microfluidic device allows for a diagnosis in less time in a much easier fashion.

This quick, low-cost way of running a diagnostic test could potentially be used in a resource-limited setting. “One of the issues that I hear from my colleagues who work in these areas that do tests is that they have equipment,” he said, “but don't always have personnel or stable power to operate them. So in places like India, Africa or Central America, our devices could be useful.”

This work was supported by the DARPA Micro/Nano Fluidics Fundamentals Focus (MF3) Center at the University of California at Irvine.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Key Piece of MRSA Vaccine Puzzle
New research funded by the Health Research Board and the Wellcome Trust has pinpointed immune cells that could be targeted by an MRSA vaccine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos